Advertisement

Astrophysics and Space Science

, Volume 176, Issue 1, pp 21–46 | Cite as

Monte-Carlo simulation of neutral atoms trajectories in the solar system

  • Yu. G. Malama
Article

Abstract

The Monte-Carlo simulation of the neutral interstellar atoms penetration into the solar system is considered. The ionization and charge exchange processes with due regard for the plasma interface structure as well as the gravitational force and the radiation pressure are taken into account. The Monte-Carlo scheme with splitting of atom trajectories is developed, and its high efficiency is shown against the imitation Monte-Carlo scheme. The main algorithms of the splitting scheme and the possible applications of the suggested method are described. In particular calculation of the mass, momentum and energy sources appearing in the plasma gasdynamical equations is considered. The gasdynamical approach for these terms is shown to be inconsistent with the Monte-Carlo results.

Keywords

Solar System Charge Exchange Radiation Pressure Neutral Atom Interface Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranov, V. B.: 1989,Space Sci. Rev. 52, Nos. 1 and 2.Google Scholar
  2. Baranov, V. B., Ermakov, M. K., and Lebedev, M. G.: 1982,Fluid Dynamics (English transl), No 5, p. 754.Google Scholar
  3. Baranov, V. B., Lebedev, M. K., and Ruderman, M. S.: 1979,Astrophys. Space Sci. 66,441.Google Scholar
  4. Baranov, V. B., Lebedev, M. G., and Malama, Ju. G.: 1990,Astrophys. J. (in press).Google Scholar
  5. Bertaux, J. L., Lallement, R., Kurt, V. G., and Mironova, E. N.: 1985,Astron. Astrophys. 150, 1.Google Scholar
  6. Bleszynski, S.: 1987,Astron. Astrophys. 180, 201.Google Scholar
  7. Dalaudier, F., Bertaux, J. L., Kurt, V. G., and Mironova, E. N.: 1984,Astron. Astrophys. 134, 171.Google Scholar
  8. Ermakov, S. M. and Mihailov, G. A.: 1982,Statistical Simulation (Statistichekoe modelirovanie), Nauka, Moscow (in Russian).Google Scholar
  9. Fahr, H. J.: 1979,Astron. Astrophys. 77, 101.Google Scholar
  10. Gangopadhyay, P. and Judge, D. L.: 1989,Astrophys. J. 336, 999.Google Scholar
  11. Haviland, J. K.: 1965, ‘The Solution of Two Molecular Flow Problems by the Monte Carlo Method’, inMethods in Computational Physics, Advances in Research and Application, Vol 4, Applications in Hydrodynamics, N.Y., p. 109.Google Scholar
  12. Landau, L. D. and Lifshits, E. M.: 1965,Mechanics (Mehanika) Nauka, Moscow (in Russian).Google Scholar
  13. Maher, L. J. and Tinsley, B. A.: 1977,J. Geophys. Res. 82, 689.Google Scholar
  14. Malama, Ju. G.: 1987,The 4th International Workshop on Interaction of Neutral Gases with Plasma in Space, Radziejowice, Poland.Google Scholar
  15. Meier, R. R.: 1977,Astron. Astrophys. 55, 211.Google Scholar
  16. Ripken, H. W. and Fahr, H. J.: 1983,Astron. Astrophys. 122, 181.Google Scholar
  17. Sobol, I. M.: 1973,Numerical Monte Carlo Methods (Chislennye metody Monte Carlo), Nauka, Moscow (in Russian).Google Scholar
  18. Wallis, M.: 1975,Nature,254, 202.Google Scholar
  19. Wu, F. M. and Judge, D. L.: 1980,Astrophys. J. 239, 389.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Yu. G. Malama
    • 1
  1. 1.Institute for Problems in MechanicsThe USSR Academy of SciencesMoscowU.S.S.R.

Personalised recommendations