Astrophysics and Space Science

, Volume 138, Issue 1, pp 1–18 | Cite as

Two-photon annihilation radiation in strong magnetic field: the case of small longitudinal velocities of electrons and positrons

  • A. D. Kaminker
  • G. G. Pavlov
  • P. G. Mamradze


Spectra, angular distributions, and polarization of two-photon annihilation radiation in a magnetic field are studied in detail in the case of small longitudinal velocities of annihilating electrons and positrons which occupy the ground Landau level. Magnetic field essentially affects the annihilation if its magnitudeB is not very low in comparison withBcr=4.4×1013G, which may take place near the surface of a neutron star. The magnetic field broadens the spectra (the width depends on an angle ϑ betweenB and a wave vector) and leads to their asymmetry. The angular distribution may be highly anisotropic, being fan-like or pencillike for different photon energies ω. The total annihilation rate is suppressed by the magnetic field (∝B−3 forBBcr).The radiation is linearly polarized; the degree and orientation of the polarization depend onB, ϑ and ω. The polarization may reach several tens percent even for comparatively small fieldsB ∼ 0.1Bcrtypical for neutron stars. This means that the polarization may be detected, e.g., in the annihilation radiation from the gamma-ray bursts.


Radiation Magnetic Field Photon Energy Wave Vector Angular Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhiezer, A. I. and Berestetskii, V. B.: 1965,Quantum Electrodynamics, Interscience, New York.Google Scholar
  2. Daugherty, J. K. and Bussard, R. W.: 1980,Astrophys. J. 238, 296.Google Scholar
  3. Golenetskii, S. V., Mazets, E. P., Aptekar, R. L., Guryan, Yu. A., and Ilynskii, V. N.: 1986,Astrophys. Space Sci. 124, 243.Google Scholar
  4. Harding, A. K.: 1986,Astrophys. J. 300, 167.Google Scholar
  5. Kaminker, A. D. and Yakovlev, D. G.: 1981,Teor. Matem. Fizika 49, 248.Google Scholar
  6. Kaminker, A. D., Pavlov, G. G., and Mamradze, P. G.: 1986, inProc. Joint Varenna-Abastumani International School and Workshop ‘Plasma Astrophysics’, ESA, Noordwijk.Google Scholar
  7. Klepikov, N. P.: 1954,Zh. Eksperim. Teor. Fiz 26, 19.Google Scholar
  8. Mazets, E. P., Golenetskii, S. V., Aptekar, R. L., Guryan, Yu. A., and Ilynskii, V. N.: 1981,Nature 290, 378.Google Scholar
  9. Nolan, P. L., Share, G. H., Matz, S., Chupp, E. L., Forrest, D. J., and Rieger, E.: 1984, in S. E. Woolseley (ed.),High Energy Transients in Astrophysics, AIP Conf. Proc. No. 115, New York, p. 399.Google Scholar
  10. Sokolov, A. A. and Ternov, I. M.: 1966,Synchrotron Radiation, Akademisches Verlag, Berlin.Google Scholar
  11. Ternov, I. M., Lysov, B. A., Dorofeef, O. F., and Pavlova, O. S.: 1968,Izv. Vuzov Fizika 3, 31.Google Scholar
  12. Wunner, G.: 1979,Phys. Rev. Letters 42, 79.Google Scholar
  13. Wunner, G., Herold, H., and Ruder, H.: 1983, in M. L. Burns, A. K. Harding, and R. Ramaty (eds.),Positron-Electron Pairs in Astrophysics, AIP Conf. Proc. No. 101, NASA Goddard Space Flight Center, p. 411.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • A. D. Kaminker
    • 1
  • G. G. Pavlov
    • 1
  • P. G. Mamradze
    • 2
  1. 1.A.F. Ioffe Institute of Physics and TechnologyAcademy of Sciences of the USSRLeningradU.S.S.R.
  2. 2.Abastumani Astrophysical ObservatoryAcademy of Sciences of the Georgian SSRTbilisiU.S.S.R.

Personalised recommendations