Astrophysics and Space Science

, Volume 154, Issue 2, pp 271–279 | Cite as

The critical and the saturation content of magnetic monopoles in rotating relativistic objects

  • Qiuhe Peng
Article

Abstract

Both the critical content ζ c (ζ ≡N m /N B , whereN m ,N B are the total numbers of monopoles and nucleons, respectively, contained in the object), and the saturation content ζ s of monopoles in a rotating relativistic object are found in this paper. The results are:
$$\zeta _c = \zeta _{c0} \left( {1 - \frac{{4a^2 }}{{R_g^2 }}} \right)^{1/2} ,{\text{ }}\zeta _{c0} \equiv {{Gm_B } \mathord{\left/ {\vphantom {{Gm_B } {g_m }}} \right. \kern-\nulldelimiterspace} {g_m }} = 4.365 \times 10^{ - 21} $$
(1)
wherea is the specific angular momentum of the object;R g the Schwarzschild radius of the object;g m , the magnetic charge of a stable colourless monopoleg m =3hc/4πe.
  1. (2)
    For a non-rotating object (a=0).
    $$\zeta _s = \zeta _n \left( {1 - {{R_g } \mathord{\left/ {\vphantom {{R_g } R}} \right. \kern-\nulldelimiterspace} R}} \right)^{ - {\text{ }}1/2} $$

    when

    $$\left( {{R \mathord{\left/ {\vphantom {R R}} \right. \kern-\nulldelimiterspace} R}_g } \right)^2 \gg {\text{ 1 or }}\zeta _s = \sqrt 2 {\text{ }}\beta ^{ - {\text{ }}1/2} \sqrt {\frac{R}{{R_g }}} \zeta _n {\text{ when }}{R \mathord{\left/ {\vphantom {R R}} \right. \kern-\nulldelimiterspace} R}_g< 1 + \beta $$
    whereR is the radius of the object; ζ n , the Newtonian saturation content2 of like monopole,
    $$\begin{gathered} \zeta _n = {{Gm_B m_m } \mathord{\left/ {\vphantom {{Gm_B m_m } {g_m^2 = 1.9 \times 10^{ - 25} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right),}}} \right. \kern-\nulldelimiterspace} {g_m^2 = 1.9 \times 10^{ - 25} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right),}} \hfill \\ \beta {\text{ = }}{{\zeta _n } \mathord{\left/ {\vphantom {{\zeta _n } {\zeta _{c0} }}} \right. \kern-\nulldelimiterspace} {\zeta _{c0} }} = 4.3 \times 10^{ - 5} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right) \hfill \\ \end{gathered} $$
    . Although the critical content cannot be reached, the induced nucleon decay by monopoles will prevent the massive objects (e.g., galactic nuclei and quasars) from collapsing into black holes (Penget al., 1986a, b).
     
  2. (3)

    For a rotating object, although the saturation content of monopoles is the same as above, the value of the critical content is greatly decreased for a fast rotating object. Due to the induced nucleon decay by monopoles, neither the horizon nor the central singularity exists for a collapsed object withR≤1/2R g which is rotating so fast that the conditiona>GM/c2 [1 − (ζ/ζ cO )2]1/2 is satisfied. Those objects mainly radiate infrared radiation with rather strong γ-ray and X-ray.

     

Keywords

Radiation Black Hole Angular Momentum Infrared Radiation Magnetic Charge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Callan, C.:Phys. Rev. D25, 2141.Google Scholar
  2. Guth, A. H.: 1982,10 −35 Seconds After the Big Bang, talk presented at the Second Moriond Astrophysics Meeting, XVIIth, Rencontre de Moriond, Les Arcs-Savoie, France, March 14–20, 1982.Google Scholar
  3. Kasuya, M.: 1982,Phys. Rev. D25, 995.Google Scholar
  4. Lazarides, G. et al.: 1981,Phys. Letters 100B, 21.Google Scholar
  5. Ma, Z. and Tang, J.: 1983,Phys. Letters 126B, 319.Google Scholar
  6. Parker, E. N.: 1970,Astrophys. J. 160, 333.Google Scholar
  7. Peng, Q.: 1988, ‘Re-estimation of the Content of Magnetic Monopoles in Celestial Bodies (Galactic Nuclei, Quasars, Stars and Planets)’, preprint.Google Scholar
  8. Peng, Q., Li, Z., and Wang, D.: 1985,Scientia Sinica 28, 970.Google Scholar
  9. Peng, Q., Wang, D., and Li, Z.: 1986a,Acta Astrophys. Sinica 6, 249.Google Scholar
  10. Peng, Q., Wang, D., and Li, Z.: 1986a,Acta Astrophys. Sinica 6, 249.Google Scholar
  11. Peng, Q., Wang, D., and Li, Z.: 1986b, in G. Giuricin, F. Mardirossian, M. Mezetti, and M. Ramella (eds.),Google Scholar
  12. Rubakov, V.: 1981,J. Eksper. Theor. Phys. Letters 33, 644.Google Scholar
  13. Rubakov, V.: 1982,Nucl. Phys. B203, 311.Google Scholar
  14. Rubakov, V.: 1983,Nucl. Phys. B218, 240.Google Scholar
  15. Wang, D. and Peng, Q.: 1986,Adv. Space Res. 6, 177.Google Scholar
  16. Wang, D., Peng, Q., and Cheng, T.: 1986,Astrophys. Space Sci. 118, 379.Google Scholar
  17. Wang, D., Peng, Q., and Li, Z.: 1985,Kexue Tongbao 30, 210.Google Scholar
  18. Wilczek, F.: 1982,Phys. Rev. Letters 48, 1146.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Qiuhe Peng
    • 1
  1. 1.Department of AstronomyNanjing UniversityNanjingChina

Personalised recommendations