Skip to main content
Log in

The critical and the saturation content of magnetic monopoles in rotating relativistic objects

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Both the critical content ζ c (ζ ≡N m /N B , whereN m ,N B are the total numbers of monopoles and nucleons, respectively, contained in the object), and the saturation content ζ s of monopoles in a rotating relativistic object are found in this paper. The results are:

$$\zeta _c = \zeta _{c0} \left( {1 - \frac{{4a^2 }}{{R_g^2 }}} \right)^{1/2} ,{\text{ }}\zeta _{c0} \equiv {{Gm_B } \mathord{\left/ {\vphantom {{Gm_B } {g_m }}} \right. \kern-\nulldelimiterspace} {g_m }} = 4.365 \times 10^{ - 21} $$
((1))

wherea is the specific angular momentum of the object;R g the Schwarzschild radius of the object;g m , the magnetic charge of a stable colourless monopoleg m =3hc/4πe.

  1. (2)

    For a non-rotating object (a=0).

    $$\zeta _s = \zeta _n \left( {1 - {{R_g } \mathord{\left/ {\vphantom {{R_g } R}} \right. \kern-\nulldelimiterspace} R}} \right)^{ - {\text{ }}1/2} $$

    when

    $$\left( {{R \mathord{\left/ {\vphantom {R R}} \right. \kern-\nulldelimiterspace} R}_g } \right)^2 \gg {\text{ 1 or }}\zeta _s = \sqrt 2 {\text{ }}\beta ^{ - {\text{ }}1/2} \sqrt {\frac{R}{{R_g }}} \zeta _n {\text{ when }}{R \mathord{\left/ {\vphantom {R R}} \right. \kern-\nulldelimiterspace} R}_g< 1 + \beta $$

    whereR is the radius of the object; ζ n , the Newtonian saturation content2 of like monopole,

    $$\begin{gathered} \zeta _n = {{Gm_B m_m } \mathord{\left/ {\vphantom {{Gm_B m_m } {g_m^2 = 1.9 \times 10^{ - 25} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right),}}} \right. \kern-\nulldelimiterspace} {g_m^2 = 1.9 \times 10^{ - 25} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right),}} \hfill \\ \beta {\text{ = }}{{\zeta _n } \mathord{\left/ {\vphantom {{\zeta _n } {\zeta _{c0} }}} \right. \kern-\nulldelimiterspace} {\zeta _{c0} }} = 4.3 \times 10^{ - 5} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right) \hfill \\ \end{gathered} $$

    . Although the critical content cannot be reached, the induced nucleon decay by monopoles will prevent the massive objects (e.g., galactic nuclei and quasars) from collapsing into black holes (Penget al., 1986a, b).

  2. (3)

    For a rotating object, although the saturation content of monopoles is the same as above, the value of the critical content is greatly decreased for a fast rotating object. Due to the induced nucleon decay by monopoles, neither the horizon nor the central singularity exists for a collapsed object withR≤1/2R g which is rotating so fast that the conditiona>GM/c 2 [1 − (ζ/ζ cO )2]1/2 is satisfied. Those objects mainly radiate infrared radiation with rather strong γ-ray and X-ray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Callan, C.:Phys. Rev. D25, 2141.

  • Guth, A. H.: 1982,10 −35 Seconds After the Big Bang, talk presented at the Second Moriond Astrophysics Meeting, XVIIth, Rencontre de Moriond, Les Arcs-Savoie, France, March 14–20, 1982.

  • Kasuya, M.: 1982,Phys. Rev. D25, 995.

    Google Scholar 

  • Lazarides, G. et al.: 1981,Phys. Letters 100B, 21.

    Google Scholar 

  • Ma, Z. and Tang, J.: 1983,Phys. Letters 126B, 319.

    Google Scholar 

  • Parker, E. N.: 1970,Astrophys. J. 160, 333.

    Google Scholar 

  • Peng, Q.: 1988, ‘Re-estimation of the Content of Magnetic Monopoles in Celestial Bodies (Galactic Nuclei, Quasars, Stars and Planets)’, preprint.

  • Peng, Q., Li, Z., and Wang, D.: 1985,Scientia Sinica 28, 970.

    Google Scholar 

  • Peng, Q., Wang, D., and Li, Z.: 1986a,Acta Astrophys. Sinica 6, 249.

    Google Scholar 

  • Peng, Q., Wang, D., and Li, Z.: 1986a,Acta Astrophys. Sinica 6, 249.

    Google Scholar 

  • Peng, Q., Wang, D., and Li, Z.: 1986b, in G. Giuricin, F. Mardirossian, M. Mezetti, and M. Ramella (eds.),

  • Rubakov, V.: 1981,J. Eksper. Theor. Phys. Letters 33, 644.

    Google Scholar 

  • Rubakov, V.: 1982,Nucl. Phys. B203, 311.

    Google Scholar 

  • Rubakov, V.: 1983,Nucl. Phys. B218, 240.

    Google Scholar 

  • Wang, D. and Peng, Q.: 1986,Adv. Space Res. 6, 177.

    Google Scholar 

  • Wang, D., Peng, Q., and Cheng, T.: 1986,Astrophys. Space Sci. 118, 379.

    Google Scholar 

  • Wang, D., Peng, Q., and Li, Z.: 1985,Kexue Tongbao 30, 210.

    Google Scholar 

  • Wilczek, F.: 1982,Phys. Rev. Letters 48, 1146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project is supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Q. The critical and the saturation content of magnetic monopoles in rotating relativistic objects. Astrophys Space Sci 154, 271–279 (1989). https://doi.org/10.1007/BF00642810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00642810

Keywords

Navigation