Skip to main content
Log in

Structure and evolutionary history of the solar system, IV

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this fourth and last part of our analysis, the first section (14) contains a study of the chemical composition of the planets and satellites. A sharp distinction is made between the large quantity of speculations about the interiors of the bodies and the rather meagerfacts known with a reasonable degree of certainty. It is shown, however, that the latter are sufficient todisprove the old concept of a Laplacian disc of homogeneous chemical composition. There is asystematic variations in the chemical composition of planets (and probably also of satellites) so that heavy elements are more abundant in the outermost and in the innermost regions of the systems.

Section 15 containsa study of meteorites. These have earlier been interpreted in terms of ‘exploded planets’ and condensation processes in thermodynamic equilibrium. It is shown that such models are irreconcilable with the laws of physics and also with the meteoritic observations. These instead are found toprovide abundant information on the processes in jet streams and on early fractionation and condensation. Further work along these lines supplemented with other solar system materials studies may lead to a detailed reconstruction of important events in the evolution of the solar system.

Section 16 demonstrates that the location of the different groups of secondary bodies is a result of a plasma phenomenon occurring at the critical velocity limit. These have recently been studied in detail in the laboratory but have not yet been fully applied to astrophysics.Groups of bodies in the planetary and the satellite systems related by the critical velocity shouldhave the same gravitational potential. There are large chemical differences between groups of different gravitational potential. This is reconcilable with the chemical differentiation found in Section 14.

Finally, Section 17 deals with thestructure of the different groups of bodies and shows that the mass distributionis a function of the spin of the central body. Summarizing the properties and distribution of bodies in the solar system against this background, it is shown that there isno need for ‘missing planets’ or to explode hypothetical large bodies. Nor is there any justification for involvingdrastic ad hoc changes in the orbits of existing bodies. The scheme is complete in the sense that in all places where groups of bodies are expected, such bodies are actually found. All of the existing bodies are accounted for (with the exception of the small Martian satellites!).

The general conclusion is that already with the empirical material now availableit is possible to suggest a series of basic processes leading to the present structure of planet and satellite systems in an internally consistent way. With the expected flow of data from space research the evolution of the solar system may eventually be described with about the same confidence and accuracy as the geological evolution of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1942–45, ‘On the Cosmogony of the Solar System’,Stockholm Obs. Ann. 14, No. 2;14, No. 5;14, No. 9.

  • Alfvén, H.: 1954,On the Origin of the Solar System, Oxford Univ. Press, London.

    Google Scholar 

  • Alfvén, H.: 1963, ‘On the Early History of the Sun and Sun and the Formation of the Solar System’,Astrophys. J. 137, 981–990.

    Google Scholar 

  • Alfvén, H.: 1969, ‘Asteroidal Jet Streams’,Astrophys. Space Sci. 4, 84–102.

    Google Scholar 

  • Alfvén, H.: 1970, ‘Jet Streams in Space’,Astrophys. Space Sci. 6, 161–174.

    Google Scholar 

  • Alfvén, H. and Arrhenius, G.: 1972, ‘Origin and Evolution of the Earth-Moon System’,The Moon 5, 210–230.

    Google Scholar 

  • Alfvén, H. and Wilcox, J. M.: 1962, ‘On the Origin of the Satellites and the Planets’,Astrophys. J. 136, 1016–1022.

    Google Scholar 

  • Allen, C. W.: 1964,Astrophysical Quantities, The Athlone Press, Univ. of London, London, 1964. 291 pp.

    Google Scholar 

  • Aller, L. H.: 1967, in K. Runcorn (ed).,Int. Dictionary of Geophysics, vol. 1, Pergamon, New York, p. 285.

    Google Scholar 

  • Anders, E.: 1964,Space Sci. Rev. 3, 583.

    Google Scholar 

  • Angerth, B., Block, L., Fahleson, U., and Soop, K.: 1962, ‘Experiments with Partly Ionized Rotating Plasmas’,Nucl. Fusion Suppl. Pt. I, p. 39.

  • Arnold, J. R.: 1965,Astrophys. J. 141, 1536–1548

    Google Scholar 

  • Arnold, J.: 1969, ‘Asteroid Families and Jet Streams’,Astron. J. 74, 1235–1242.

    Google Scholar 

  • Arrhenius, G.: 1969, ‘Kosmologisk revolution från månen’,Forskning och Framsteg 7, 2–5.

    Google Scholar 

  • Arrhenius, G.: 1972, ‘Chemical Effects in Plasma Condensation’ inFrom Plasma to Planet, Nobel Symp. 21 (ed. by A. Elvius), Wiley, New York, pp. 117–132.

    Google Scholar 

  • Arrhenius, G. and Alfvén, H.: 1971, ‘Fractionation and Condensation in Space’,Earth Planetary Sci. Letters 10, 253–267.

    Google Scholar 

  • Arrhenius, G. and Asunmaa, S. K.: 1973, ‘Aggregation of Grains in Space’,The Moon,8, 368–391.

    Google Scholar 

  • Arrhenius, G. and De, B.: 1973, ‘Equilibrium Condensation in a Solar Nebula’,Meteoritics 8, 297–313.

    Google Scholar 

  • Arrhenius, G., Asunmaa, S., Drever, J. I., Everson, J., Fitzgerald, R. W., Frazer, J. Z., Fujita, H., Hanor, J. S., Lal, D., Liang, S. S., Macdougall, D., Reid, A. M., Sinkankas, J., and Wilkening, L.: 1970, ‘Phase Chemistry, Structure and Radiation Effects in Lunar Samples’,Science 167, 659–661.

    Google Scholar 

  • Arrhenius, G., Liang, S., Macdougall, D., Wilkening, L., Bhandari, N., Bhat, S., Lal, D., Rajagopalan, G., Tamhane, A. S., and Venkatavaradan, V. S.: 1971, The Exposure History of the Apollo 12 Regolith, inProc. 2nd Lunar Sci. Conf., 3, The M.I.T. Press, Cambridge, Mass., pp. 2583–2598.

    Google Scholar 

  • Arrhenius, G., Alfvén, H., and Fitzgerald, R.: 1973,Asteroid and Comet Exploration, NASA CR-2291, NASA, Wash., D.C., 56 pp.

    Google Scholar 

  • Arrhenius, G., De, B. R., and Alfvén, H.: 1974, ‘Origin of the Ocean’,The Sea 5, in press.

  • Banerjee, S. K.: 1967, ‘Fraction of Iron in the Solar System’,Nature 216, 781.

    Google Scholar 

  • Banerjee, S. K. and Hargraves, R. B.: 1971, ‘Natural Remanent Magnetization of Carbonaceous Chondrites’,Earth Planetary Sci. Letters 10, 392–396.

    Google Scholar 

  • Banerjee, S. K. and Hargraves, R. B.: 1972, ‘Natural Remanent Magnetizations of Carbonaceous Chondrites and the Magnetic Field in the Early Solar System’,Earth Planetary Sci. Letters 17, 110–119.

    Google Scholar 

  • Baxter, D. and Thompson, W. B.: 1973, ‘Elastic and Inelastic Scattering in Orbital Clustering’,Astrophys. J. 183, 323–336.

    Google Scholar 

  • Berlage, H. P.: 1948, ‘The Disc Theory of the Origin of the Solar System’,Proc. Koninkl. Ned. Acad. Wetenschap.,51, 796.

    Google Scholar 

  • Birch, F.: 1964, ‘Density and Composition of Mantle and Core’,J. Geophys. Res.,69, 4377–4388.

    Google Scholar 

  • Birch, F.: 1965, ‘Energetics of Core Formation’,J. Geophys. Res. 70, 6217–6221.

    Google Scholar 

  • Bishop, E. V. and DeMarcus, W. C.: 1970, ‘Thermal Histories of Jupiter Models’,Icarus 12, 317–330.

    Google Scholar 

  • Bstrőm, K. and Fredriksson, K.: 1966, ‘Surface Conditions of the Orgueil Meteorite Parent Body as Indicated by Mineral Associations’,Smithsonian Miscellaneous Collections 151, 1–54.

    Google Scholar 

  • Bobrovnikoff, N. T.: 1972, ‘Physical Theory of Comets in Light of Spectroscopic Data’,Rev. Mod. Phys. 14, 168–178.

    Google Scholar 

  • Brecher, A.: 1971, ‘On the Primordial Condensation and Accretion Environment and the Remanent Magnetization of Meteorites’, in C. L. Hemmenway, A. F. Cook, and P. M. Millman (eds.)The Evolutionary and Physical Problems of Meteoroids, NASA SP-319, NASA, Wash., D.C.

    Google Scholar 

  • Brecher, A.: 1972a, ‘Memory of Early Magnetic Fields in Carbonaceous Chondrites’, in H. Reeves (ed.),On the Origin of the Solar System, Centre Nationale de la Recherche Scientifique, Paris, p. 260.

    Google Scholar 

  • Brecher, A.: 1972b, ‘I. Vapor Condensation of Ni-Fe Phases and Related Problems. II. The Paleomagnetic Record in Carbonaceous Chondrites’, Ph. D. Thesis, Dept. Applied Physics and Information Science, University of California, San Diego.

    Google Scholar 

  • Brecher, A. and Arrhenius, G.: 1974, ‘The Paleomagnetic Record in Carbonaceous Chondrites: Natural Remanence and Magnetic Properties’,J. Geophys. Res., in press.

  • Brownlee, R. R. and Cox, A. N.: 1961, ‘Early Solar Evolution’,Sky Telesc. 21, 252–256.

    Google Scholar 

  • Chapman, C. R.: 1972a, ‘Surface Properties of Asteriods’, Ph. D. Thesis, Massachusetts Institute of Technology.

  • Chapman, C. R.: 1972b, Paper presented at the Coll. on Toro, Tucson, Ariz., Dec., 1972.

  • Chapman, C., Johnson, T. V., and McCord, T. B.: 1971, ‘A Review of Spectrophotometric Studies of Asteroids’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, pp. 51–66.

  • Danielsson, L.: 1969, ‘On the Interaction Between a Plasma and a Neutral Gas’, Research Report 69-17, Division of Plasma Physics, Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Danielsson, L.: 1970, ‘Experiments on the Interaction between a Plasma and a Neutral Gas’,Phys. Fluids 13, 2288–2294.

    Google Scholar 

  • Danielsson, L.: 1971, ‘The profile of a jetstream’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, Government Printing Office, Washington, D.C., pp. 353–362.

    Google Scholar 

  • Danielsson, L.: 1973, ‘Riview of the Critical Velocity of Gas-Plasma Interaction, Part I: Experimental Observations’,Astrophys. Space Sci. 24, 459–485.

    Google Scholar 

  • De, Bibhas: 1973, ‘On the Mechanism of Formation of Loop Prominences’,Solar Phys. 31, 437–447.

    Google Scholar 

  • DeMarcus, W. C.: 1958, ‘The Constitution of Jupiter and Saturn’,Astron. J. 63, 2.

    Google Scholar 

  • Demarcus, W. C. and Reynolds, R. T.: 1963, ‘The Constitution of Uranus and Neptune’,Mém. Soc. Roy. Sci. Liège, cinquième série, VII, 51–64.

    Google Scholar 

  • Dobryshevskii, E. M.: 1964, ‘The Volt-Ampere Characteristics of a Homopolar Cell’,Soviet Phys.-Techn. Phys. 8, 903–905.

    Google Scholar 

  • Dollfus, A.: 1971, ‘Physical Studies of Asteroids by Polarization of the Light’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, NASA, Wash., D.C., pp. 95–116.

    Google Scholar 

  • Drickamer, H. G.: 1965, ‘The Effect of High Pressure on the Electonic Structure of Solids’, in F. Seitz and D. Turnbull (eds.),Solid State Physics,17, 1–333.

  • Duke, M. B. and Silver, L. T.: 1967, ‘Petrology of Eucrites, Howardites and Mesosiderites’,Geochim. Cosmochim. Acta 31, 1637–1665.

    Google Scholar 

  • Eberhardt, P., Geiss, J., and Grögler, N.: 1965, ‘Über die Verteilung der Uredelgase im Meteoriten Khor Temiki’,Tschermaks Min. Petr. Mitt. 10, 535–551.

    Google Scholar 

  • Elsasser, W. M.: 1963, ‘Early History of the Earth’, in J. Geiss and E. D. Goldberg (eds.),Earth Science and Meteoritics, dedicated to F. G. Houtermans, North-Holland Publ. Co., Amsterdam, pp. 1–30.

    Google Scholar 

  • v. Engel, A.: 1955,Ionized Gases, Oxford Univ. Press., London.

    Google Scholar 

  • Ephemerides of Minor Planets for 1969. Institute of Theoretical Astronomy, Acad. Sci. USSR. Publication ‘Nauka’ Leningrad Department, Leningrad, 1968.

  • Epstein, S. and Taylor, H. P. Jr.: 1970, ‘The Concentration and Isotopic Composition of Hydrogen, Carbon and Silicon in Apollo 11 Lunar Rocks and Minerals’, inProc. Apollo 11 Lunar Sci. Conf.,2 (ed. by A. A. Levinson), Pergamon Press, New York, pp. 1085–1096.

    Google Scholar 

  • Epstein, S. and Taylor, H. P., Jr.: 1972, ‘O18/O16, Si30/Si28, C13/C12, and D/H studies of Apollo 14 and 15 Samples’,Lunar Science vol. III, (ed. by C. Watkins), Lunar Science Institute Contribution No. 88, pp. 236–238.

  • Euken, A.: 1944, ‘Über den Zustand des Erdinnern’,Naturwissenschaften, No. 14/26, 112–121.

    Google Scholar 

  • Fireman, E. L.: 1958, ‘Distribution of helium-3 in the Carbo Meteorite’,Nature 181, 1725.

    Google Scholar 

  • Fleischer, R. L., Price, P. B., Walker, R. M., Maurette, M., and Morgan, G.: 1967a, ‘Tracjs of Heavy Primary Cosmic Rays in Meteorites’,J. Geophys. Res. 72, 355–366.

    Google Scholar 

  • Fleischer, R. L., Price, P. B., Walker, R. M., and Maurette, M.: 1967b, ‘Origins of Fossil Charged-Particle Tracks in Meteorites’,J. Geophys. Res. 72, 331–353.

    Google Scholar 

  • Fodor, R. V. and Keil, K.: 1973, ‘Composition and Origin of Lithic Fragments in L- and H-Group Chondrites’,Meteoritics 8, 366–367.

    Google Scholar 

  • Fowler, W. A.: 1972, ‘What Cooks with Solar Neutrinos?’,Nature 238, 24–26.

    Google Scholar 

  • French, B. and Short, N.: 1968,Shock Metamorphism of Natural Meteorites, Mono Book Corp., Baltimore, Md.

    Google Scholar 

  • Fuchs, L. H.: 1971, ‘Occurrence of Wollastonite, Rhönite, and Andradite in the Allende meteorite’,Amer. Mineralogist 56, 2053–2068.

    Google Scholar 

  • Gast, P. W.: 1971, ‘The Chemical Composition of the Earth, the Moon and Chondritic Meteorites’, in E. C. Robertson (ed.),The Nature of the Solid Earth, McGraw-Hill, New York, pp. 19–40.

    Google Scholar 

  • Gault, D. E., Quaide, W. L., and Oberbeck, V. R.: 1968, ‘Impact Cratering Mechanics and Structures’, in B. M. French and N. M. Short (eds.),Shock Metamorphism of Natural Materials, Mono Book Corp., Md., pp. 87–99.

    Google Scholar 

  • Gehrels, T.: 1972a, ‘Physical Parameters of Asteroids and Interrelations with Comets’, inFrom Plasma to Planet, Nobel Symp 21 (ed. by A. Elvius), Wiley, New York, pp. 169–178.

    Google Scholar 

  • Gehrels, T.: 1972b, Paper presented at the Coll. on Toro, Tucson, Ariz., Dec., 1972.

  • Gerstenkorn, H.: 1969, ‘The Earliest Past of the Earth-Moon System’,Icarus 11, 189–207.

    Google Scholar 

  • Gold, T. and Williams, G.: 1972, ‘Secondary Emission Charging and Movement of Dust on the Lunar Surface’, Sixth ESLAB Symp.,Photon and Particle Interactions with Surfaces in Space. Noordwijk, Netherlands, Sept. 26–29, 1972 (abstract).

  • Gopalan, K. and Wetherill, G. W.: 1969, ‘Rubidium-Strontium Age of Amphoterite (LL) Chondrites’,J. Geophys. Res. 74, 4349–4358.

    Google Scholar 

  • Greenstein, J. L. and Arpigny, C.: 1962, ‘The Visual Region of the Spectrum of Comet Markos (1957d) at High Resolution’,Astrophys. J. 135, 892–905.

    Google Scholar 

  • Grevesse, N., Blanquet, G. and Boury, A.: 1968, ‘Abondances solaires de quelques éléments représentatifs au point de vue de la nucléosynthese’, in L. H. Ahrens (ed.),Origin and Distribution of the Elements, Pergamon, New York, pp. 177–182.

    Google Scholar 

  • Halliday, I.: 1969, ‘Comments on the Mean Density of Pluto’,Publ. Astron. Soc. Pacific 81, 285–287.

    Google Scholar 

  • Hanks, T. C. and Anderson, D. L.: 1969, ‘The Early Thermal History of the Earth’,Phys. Earth Planetary Interior 2, 19–29.

    Google Scholar 

  • Hapke, B. W., Cohen, A. J., Cassidy, W. A., and Wells, E. N.: 1970, ‘Solar Radiation Effects on the Optical Properties of Apollo 11 Samples’, inProc. Apollo 11 Lunar Sci. Conf.,3 (ed. by A. Levinson), Pergamon Press, New York, pp. 2199–2212.

    Google Scholar 

  • Harris, P. G. and Tozer, D. C.: 1967, ‘Fractionation of Iron in the Solar System’,Nature 215, 1449–51.

    Google Scholar 

  • Hassan, H. A.: 1966, ‘Characteristics of a Rotating Plasma’,Phys. Fluids 9, 2077–2078.

    Google Scholar 

  • Heymann, D.: 1967, ‘On the Origin of Hypersthene Chondrites: Ages and Shock Effects of Black Chondrites’,Icarus 6, 189–221.

    Google Scholar 

  • Hohenberg, C. M. and Reynolds, J. H.: 1969, ‘Preservation of the Iodine-Xenon Record in Meteorites’,J. Geophys. Res. 74, 6679–6683.

    Google Scholar 

  • Honda, M. and Arnold, J. R.: 1967, ‘Effects of Cosmic Rays on Meteorites’, inHandbuch der Physik 46/2, 613–632, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Hubbard, W. B.: 1969, ‘Thermal Models of Jupiter and Saturn’,Astrophys. J. 155, 333–344.

    Google Scholar 

  • Jedwab, J.: 1967, ‘La magnetite en plaquettes des météorites carbonées d'Alais, Ivuna et Orgueil’,Earth Planetary Sci. Letters 2, 440–444.

    Google Scholar 

  • Jokipii, J. R.: 1964, ‘The Distribution of Gases in the Protoplanetary Nebula’,Icarus 3, 248.

    Google Scholar 

  • Kaula, W. M.: 1971, ‘Dynamical Aspects of Lunar Origin’,Rev. Geophys. Space Phys. 9, 217–238.

    Google Scholar 

  • Kerridge, J. F.: 1970, ‘Some Observations on the Nature of Magnetite in the Orgueil Meteorite’,Earth Planetary Sci. Letters 9, 299–306.

    Google Scholar 

  • Kerridge, J. F. and Vedder, J. F.: 1972, ‘Accretionary Processes in the Early Solar System: an Experimental Approach’,Science 177, 161–163.

    Google Scholar 

  • Kirsten, T. A. and Schaeffer, O. A.: 1969, ‘High Energy Interactions in Space’, in L. C. L. Yuan (ed.),Elementary Particles, Science, Technology and Society, Academic Press, New York 76–157.

    Google Scholar 

  • Kumar, S. S.: 1972 ‘On the Formation of Jupiter’,Astrophys. Space Sci. 16, 52–54.

    Google Scholar 

  • Lal, D.: 1972, ‘Hard Rock Cosmic Ray Archaeology’,Space Sci. Rev. 14, 3–102.

    Google Scholar 

  • Lehnert, B.: 1966, ‘Ionization Process of a Plasma’,Phys. Fluids 9, 774–779.

    Google Scholar 

  • Lehnert, B.: 1967, ‘Space-Charge Effects by Nonthermal Ions in a Magnetized Plasma’,Phys. Fluids 10, 2216.

    Google Scholar 

  • Lehnert, B.: 1970, ‘On the Conditions for Cosmic Grain Formation’,Cosmic Electrodyn. 1, 219–232.

    Google Scholar 

  • Levin, B. J.: 1972, ‘Origin of the Earth’, in A. R. Ritsema (ed.),Upper Mantle, Tectonophysics 13, 7–29.

  • Lewis, J. S.: 1971a, ‘Consequences of the Presence of Sulfur in the Core of the Earth’,Earth Planetary Sci. Letters 11, 130–134.

    Google Scholar 

  • Lewis, J. S.: 1971b, ‘Satellites of the Outer Planets: Their Physical and Chemical Nature’,Icarus 15, 174–185.

    Google Scholar 

  • Lin, S.-C.: 1961, ‘Limiting Velocity for a Rotating Plasma’,Phys. Fluids 4, 1277–1288.

    Google Scholar 

  • Lindblad, B. A. and Southworth, R. B.: 1971, ‘A Study of Asteroid Families and Streams by Computer Techniques’, in T. Gehrels (ed.)Physical Studies of Minor Planets, NASA SP-267, NASA, Wash., D.C., p. 337.

    Google Scholar 

  • Lodochnikov, V. N.: 1939, ‘Some General Problems Connected with Magma Producing Basaltic Rocks’,Zap. Mineral. O-va. 64, 207–223.

    Google Scholar 

  • Lyttleton, R. A.: 1969, ‘On the Internal Structures of Mercury and Venus’,Astrophys. Space Sci. 5, 18–35.

    Google Scholar 

  • MacDougall, J. D.: 1972, ‘Particle Track Records in Natural Solids from Oceans on Earth and Moon’, Ph. D. Thesis, University of California, San Diego.

    Google Scholar 

  • MacDougall, D., Martinek, B., and Arrhenius, G.: 1972, ‘Regolith Dynamics’, in C. Watkins (ed.), in vol. IIILunar Science, Lunar Science Inst. Contrib. No. 88, The Lunar Science Institute, Houston, Texas, pp. 498–500.

    Google Scholar 

  • Macdougall, D., Rajan, R. S., and Price, P. B.: 1973, ‘Gas-Rich Meteorites: Possible Evidence for Origin on a Regolith’,Science 183, 73–74.

    Google Scholar 

  • Majeva, S. V.: 1971, ‘Thermal History of the Earth with Iron Core’,Izv. Akad. Nauk SSSR, Fiz. Zemli, 1971, No. 1, 3–12, English translation,Physics of the Solid Earth 1971, 1–7.

    Google Scholar 

  • Manka, R. H., Michel, F. C., Freeman, J. W., Dyal, P., Parkin, C. W., Colburn, D. S., and Sonett, C. P.: 1972., Evidence for acceleration of lunar ions, in C. Watkins (ed.)Lunar Science, Vol. III, Lunar Science Contribution No. 88, The Lunar Science Institute, Houston, Texas, p. 504.

    Google Scholar 

  • Marti, K.: 1973, ‘Ages of the Allende Chondrules and Inclusions’Meteoritics 8, 51.

    Google Scholar 

  • Mason, B. (ed.): 1971,Handbook of Elemental Abundances in Meteorites Gordon and Breach Sci. Publ., New York.

    Google Scholar 

  • Mendis, A.: 1973, ‘Comet-Meteor Stream Complex’,Astrophys. Space Sci. 20, 165–176.

    Google Scholar 

  • McCord, T. B.: 1966, ‘Dynamical Evolution of the Neptunian System’.Astron. J. 71, 585–590.

    Google Scholar 

  • McCrosky, R. E.: 1970, ‘Fireballs and the Physical Theory of Meteors’,Bull. Astron. Inst. Czech. 21, 271.

    Google Scholar 

  • McQueen, R. L. and Marsh, S. P.: 1960, ‘Equations of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars’,J. Appl. Phys. 31, 1253–1269.

    Google Scholar 

  • Millman, P. M.: 1972, ‘Cometary Meteoroids’, inFrom Plasma to Planet Nobel Symp,21, (ed. by A. Elvius), Wiley, New York, pp. 157–168.

    Google Scholar 

  • Morrison, D.: 1973, ‘New Techniques for Determining Sizes of Satellites and Asteroids’,Comments Astrophys. Space Phys. 5, 51–56.

    Google Scholar 

  • Müller, E. A.: 1968, ‘The Solar Abundances’, in L. H. Ahrens (ed.),Origin and Distribution of the Elements, Pergamon, New York, pp. 155–176.

    Google Scholar 

  • Murphy, R. E., Cruikshank, D. P., and Morrison, D.: 1972, ‘Radii, Albedos, and 20-Micron Brightness temperatures of Iapetus and Rhea’,Astrophys. J. Letters 177, L93.

    Google Scholar 

  • Neukum, G., Mehl A., Fechtig, H., and Zahringer, J.: 1970, ‘Impact Phenomena of Micrometeorites on Lunar Surface Material’,Earth Planetary Sci. Letters 8, 31–35.

    Google Scholar 

  • Neuvonen, K. J., Ohlson, B., Papunen, Heikki, Häkli, T. A., and Ramdohr, Paul: 1972, ‘The Haverö Ureilite’,Meteoritics 7, 515–531.

    Google Scholar 

  • Newburn, R. L. Jr. and Gulkis, S.: 1973, ‘A Survey of the Outer Planets Jupiter, Saturn, Uranus, Neptune, Pluto, and Their Satellites’,Space Sci. Rev. 14, 179–271.

    Google Scholar 

  • Öpik, E. J.: 1963,Advan. Astron. Astrophys. 2, 219.

    Google Scholar 

  • Öpik, E. J.: 1966,Advan. Astron. Astrophys. 4, 302.

    Google Scholar 

  • Orowan, E.: 1969, ‘Density of the Moon and Nucleation of Planets’,Nature 222, 867.

    Google Scholar 

  • Papanastassiou, D. A., Gray, C. M. and Wasserburg, G. J.: 1973, ‘The Identification of Early Solar Condensates in the Allende meteorite’,Meteoritics 8, 417–418.

    Google Scholar 

  • Pellas, P.: 1972, ‘Irradiation History of Grain Aggregates in Ordinary Chondrites. Possible Clues to the Advanced Stages of Accretion’,From Plasma to Planet, Nobel Symp. 21 (ed. by A. Elvius), Wiley, New York, pp. 65–92.

    Google Scholar 

  • Petschek, H. E.: 1960, ‘Comment Following Alfvén, H., Collision between a Nonionized Gas and a Magnetized Plasma’,Rev. Mod. Phys. 32, 710–712.

    Google Scholar 

  • Podosek, F. A.: 1970, ‘Dating of Meteorites by the High-Temperature Release of Iodine-Correlated Xe129 Geochim.Cosmochim. Acta 34, 341–365.

    Google Scholar 

  • Price, P. D., Rajan, R. S., Hutcheon, I. D., Macdougall, D., and Shirk, E. K.: 1973, ‘Solar Flares, Past and Present’, in J. W. Chamberlin and C. Watkins (eds),Lunar Science, vol. 4, Lunar Science Institute, Houston, Texas, pp. 600–602.

    Google Scholar 

  • Rama Murthy, V. and Hall, H. T.: 1970, ‘On the Possible Presence of Sulfur in the Earth's Core’,Phys Earth Planetary Interior 2, 276–282.

    Google Scholar 

  • Ramsey, W. H.: 1948, ‘On the Constitution of the Terrestrial Planets’,Monthly Notices Roy. Astron. Soc. 108 406–413.

    Google Scholar 

  • Ramsey, W. H.: 1949, ‘On the Nature of the Earth's Core’Monthly Notices Roy. Astron. Soc., Geophys. Suppl. 5, 409–426.

    Google Scholar 

  • Reid, A. M. and Fredriksson, K.: 1967, ‘Chondrules and Chondrites’, in P. H. Abelson (ed.),Researches in Geochemistry, vol. 2, John Wiley, New York, pp. 170–203.

    Google Scholar 

  • Reynolds, R. T. and Summers, A. L.: 1965, ‘Models of Uranus and Neptune’,J. Geophys. Res. 70, 199–208.

    Google Scholar 

  • Ringwood, A. E.: 1959, ‘On the Chemical Evolution and Densities of the Planets’,Geochim. Cosmochim. Acta 15, 257–283.

    Google Scholar 

  • Ringwood, A. E.: 1966, ‘Chemical Evolution of the Terrestrial Planets’,Geochim. Cosmochim. Acta 30, 41–104.

    Google Scholar 

  • Samara, G. A.: 1967, ‘Insulator-to-Metal Transition at High Pressure’,J. Geophys. Res. 72, 671–678.

    Google Scholar 

  • Schubart, J.: 1971, ‘Asteroid Masses and Densities, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, pp. 33–40.

  • Seidelmann, P. K., Klepczynski, W. J., Duncombe, R. L., and Jackson, E. S.: 1971, ‘Determination of the Mass of Pluto’,Astron. J. 76, 488–492.

    Google Scholar 

  • Sherman, J. C.: 1970a, Dept. of Electron and Plasma Physics Report 70-30, Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Sherman, J. C.: 1970b, Dept. of Electron and Plasma Physics Report 70-14, Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Sherman, J. C.: 1973, ‘Review of the Critical Velocity Gas-Plasma Interaction, Part II: Theory’,Astrophys. Space Sci. 24, 487–510.

    Google Scholar 

  • Signer, P. and Suess, H. E.: 1963, ‘Rare Gases in the Sun, in the Atmosphere, and in Meteorites’. in J. Geiss and E. D. Goldberg (eds.),Earth Science and Meteoritics, North-Holland Publ. Co., Amsterdam, pp. 241–272.

    Google Scholar 

  • Simakov, G. V., Podurets, M. A., and Trunin, R. F.: 1973,Doklady Akad. Nauk SSSR 211, 1330.

    Google Scholar 

  • Sokol, P. M.: 1968, ‘Analysis of a Rotating Plasma Experiment’,Phys. Fluids 11, 637–645.

    Google Scholar 

  • Suess, H. E. and Urey, H. C.: 1956, ‘Abundances of the Elements’,Rev. Mod. Phys. 28, 53–74.

    Google Scholar 

  • Swings, P., and Page, T.: 1948,Astrophys. J. 108, 526.

    Google Scholar 

  • Toksőz, M. N., Solomon, S. C., Minear, J. W., and Johnston, D. H.: 1972.The Moon 4, 190.

    Google Scholar 

  • Turekian, K. K. and Clark, S. P., Jr.: 1969, ‘Inhomogeneous accumulation of the Earth from the Primitive Solar Nebula’,Earth Planetary Sci. Letters 6, 346–348.

    Google Scholar 

  • Urey, H. C.: 1952,The Planets: Their Origin and Development, Yale Univ. Press, New Haven, Conn.

    Google Scholar 

  • Urey, Harold C.: 1972, ‘Abundances of the Elements. Part IV: Abundances of Interstellar Molecules and Laboratory Spectroscopy’,Ann. New York Acad. Sci. 194, 35–44.

    Google Scholar 

  • Urey, H. C. and Mayeda, T.: 1959, ‘The Metallic Particles of Some Chondrites’,Geochim. Cosmochim. Acta 17, 113–124.

    Google Scholar 

  • Van Schmus, W. R. and Wood, J. A.: 1967, ‘A Chemical-Petrological Classification for the Chondritic Meteorites’,Geochim. Cosmochim. Acta 31, 747–765.

    Google Scholar 

  • Verniani, F.: 1969, ‘Structure and Fragmentation of Meteorites’,Space Sci. Rev. 10, 230.

    Google Scholar 

  • Vinogradov, A. P.: 1962, ‘Origin of the Earth's Shells’,Izv. Akad. Nauk SSSR, Ser. Geol. 11, 3–17.

    Google Scholar 

  • Vinogradov, A. P. and Yaroshovsky, A. A.: 1967, ‘Further Investigation ofthe Differentiation Mechanism of the Earth's Mantle: The Problem of Heat-Mass Transfer in Connection With Zone Melting in the Mantle’, IUGG General Assembly, 14th, Abstracts of Papers, IIa, A-2.

  • Voshage, H. and Hintenberg, H.: 1963, ‘The Cosmic-Ray Exposure Ages of Iron Meteorites as Derived from the Isotopic Composition of Potassium and Production Rates of Cosmogenic Nuclides in the Past’, inRadioactive Dating, IAEA, Vienna, pp. 367–379.

    Google Scholar 

  • Wänke, H.: 1965, ‘Der Sonnenwind als Quelle der Uredelgase in Steinmeteoriten’,Z. Naturforsch. 20A, 946.

    Google Scholar 

  • Wänke, H.: 1966, ‘Meteoritenalter und verwandte Probleme der Kosmochemie’,Fortschr. Chem. Forsch. 7, 332–408.

    Google Scholar 

  • Wasserburg, G. J., Papanastassiou, D. A., and Sanz, H. G.: 1969, ‘Initial Strontium for a Chondrite and the Determination of a Metamorphism or Formation Interval’,Earth Planetary Sci. Letters 7, 33–43.

    Google Scholar 

  • von Weizsäcker, C. F.: 1944, ‘Über die Entstehung des Planetsystems’,Z. Astrophys. 22, 319–355.

    Google Scholar 

  • Wetherill, G. W.: 1968, ‘Lunar Interior: Constraint on Basaltic Composition’,Science 160, 1256–1257.

    Google Scholar 

  • Wetherill, G. W.: 1971, ‘Cometary versus Asteoidal Origin of Chondritic Meteorites’, in T. Gehrels (ed.),Physical Studies of Minor Planets, NASA SP-267, NASA, Wash., D.C.

    Google Scholar 

  • Wiik, H. B.: 1956 ‘The Chemical Composition of some Stony Meteorites’,Geochim. Cosmochim. Acta 9, 279–289.

    Google Scholar 

  • Wilcox, J. M.: 1972, ‘Why Does the Sun Sometimes Look Like a Magnetic Monopole?’ inComments on Modern Physics, Part C',Comments Astrophys. Space Phys. 4, 141–147.

  • Wilkening, L., Lal, D., and Reid, A. M.: 1971, ‘The Evolution of the Kapoeta Howardite Based on Fossil Track Studies’,Earth Planetary Sci. Letters 10, 334–340.

    Google Scholar 

  • Worrall, G. and Wilson, A. M.: 1972, ‘Can Astrophysical Abundances Be Taken Seriously?’,Nature 236, 15–18.

    Google Scholar 

  • Zähringer, J.: 1966, ‘Die Chronologie der Chondriten aufgrund von Edelgasisotopen-Analysen’,Meteoritika 27, 25.

    Google Scholar 

  • Zimmerman, P. D. and Wetherill, G. W.: 1973, ‘Asteroidal Sources of Meteorites’,Science 182, 51–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts I, II and III were published inAstrophys. Space Sci. 8, 338–421;9, 3–33 and21, 117–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfvén, H., Arrhenius, G. Structure and evolutionary history of the solar system, IV. Astrophys Space Sci 29, 63–159 (1974). https://doi.org/10.1007/BF00642720

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00642720

Keywords

Navigation