Skip to main content
Log in

Problems related to macroscopic electric fields in the magnetosphere

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot, collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles.

A particularly interesting feature of magnetospheric electric fields is the fact that they can have substantial components along the geomagnetic field. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic-mirror effect, anomalous resistivity, collisionless thermoelectric effect and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1955, ‘On the Electric Field Theory of Magnetic Storms and Aurorae’,Tellus 7, 50.

    Google Scholar 

  • Alfvén, H.: 1958, ‘On the Theory of Magnetic Storms and Aurorae’,Tellus 10, 104.

    Google Scholar 

  • Alfvén, H.: 1959, ‘Momentum Spectrum of Cosmic Radiation’,Tellus 11, 106.

    Google Scholar 

  • Alfvén, H.: 1968, ‘The Second Approach to Cosmical Electrodynamics’,Ann. Geophys. 24, 1.

    Google Scholar 

  • Alfvén, H.: 1976, ‘On Frozen-In Field Lines and Field-Line Reconnection’,J. Geophys. Res. 81 4019.

    Google Scholar 

  • Alfvén, H. and Fälthammar, C.-G.: 1963,Cosmical Electrodynamics, Fundamental Principles, Clarendon Press, Oxford.

    Google Scholar 

  • Babié, M. and Torvén, S.: 1974, ‘Current Limiting Space Charge Sheaths in a Low Pressure Arc Plasma’, TRITA-EPP-74-02.

  • Biskamp, D., von Hagenow, K. U. and Welter, H.: 1972, ‘Computer Studies of Current-Driven Ion-Sound Turbulence in Three Dimensions’,Phys. Letters 39A, 351.

    Google Scholar 

  • Block, L. P. and Carpenter, D. L.: 1974, ‘Derivation of Magnetospheric Electric Fields from Whistler Data in a Dynamic Geomagnetic field’,J. Geophys. Res. 79, 2783.

    Google Scholar 

  • Block, L. P.: 1975, ‘Double Layers’, in B. Hulqvist and L. Stenflo (eds),Physics of the Hot Plasma in the Magnetosphere, Plenum Publ. Co., p. 229.

  • Block, L. P. and Fälthammar, C.-G.: 1976, ‘Mechanisms that May Support Magnetic-Field-Aligned Electric Fields in the Magnetosphere’,Ann. Geophys. 32, 161.

    Google Scholar 

  • Burton, R. K., McPherron, R. L. and Russell, C. T.: 1975, ‘The Theoretical Magnetosphere: A Half-wave Rectifier of the Interplanetary Electric Field’,Science 189, 717.

    Google Scholar 

  • Cole, K. D.: 1971, ‘Rapid Diffusion of Energetic Charged Particles across Magnetic Fields’,J. Geophys. Res. 76, 909.

    Google Scholar 

  • Fredricks, R. W., Scarf, F. L. and Russell, C. T.: 1973, ‘Field-Aligned Currents, Plasma Waves, and Anomalous Resistivity in the Disturbed Polar Cusp’,J. Geophys. Res. 78, 2133.

    Google Scholar 

  • Freeman, J.: 1968, ‘Observation of Flow of Low-Energy Ions at Synchronous Altitude and Implications for Magnetospheric Convection’,J. Geophys. Res. 73, 4151.

    Google Scholar 

  • Fälthammar, C.-G.: 1968, ‘Radial Diffusion by Violation of the Third Adiabatic Invariant’, in B. M. McCormac (ed.),Earth's Particles and Fields, Reinhold Book Corporation, p. 157.

  • Geller, R., Hopfgarten, N., Jacquot, B. and Jacquot, C.: 1974, ‘Electric Fields Parallel to the Magnetic Field in a Laboratory Plasma in a Magnetic Mirror Field’,J. Plasma Phys. 12, 467.

    Google Scholar 

  • Goertz, C. K., and Joyce, G.: 1975, ‘Numerical Simulation of the Plasma Double Layer’Astrophys. Space Sci. 32, 165.

    Google Scholar 

  • Gurnett, P. A. and Frank, L. A.: 1976, ‘A Region of Intense Plasma Wave Turbulence on Auroral Field Lines’, University of Iowa Report 76-12.

  • Haerendel, G., Rieger, E., Valenzuela, A., Föppl, H., Stenback-Nielsen, H. C. and Wescott, E. M.: 1976, ‘First Observation of Electrostatic Acceleration of Barium Ions into the Magnetosphere’, inEuropean Programmes on Sounding-Rocket and Balloon Research in the Auroral Zone, ESA SP 115, p. 203.

  • Heppner, J. P.: 1972, ‘Polar-Cap Electric Field Distributions Related to the Interplanetary Magnetic Field Direction’,J. Geophys. Res. 77, 4877.

    Google Scholar 

  • Hopfgarten, N., Johansson, R. B., Nilsson, B. and Persson, H.: 1968, ‘Penning Discharge in a Strongly Inhomogeneous Magnetic Mirror Field’,Phys. Fluids 11, 2272.

    Google Scholar 

  • Hultqvist, B.: 1971, ‘On the Production of a Magnetic-Field-Aligned Electric Field by the Interaction between the Hot Magnetospheric Plasma and the Cold Ionosphere’,Planet. Space Sci. 19, 749.

    Google Scholar 

  • Hultqvist, B.: 1972, ‘On the Interaction between the Magnetosphere and the Ionosphere’, in E. R. Dyer (gen. ed.),Solar Terrestrial Physics/1970, Reidel Publ. Co., Dordrecht,Pt IV, p. 176.

    Google Scholar 

  • Jeffries, R. A., Roach, W. H., Hones, E. M., Stenbeck-Nielsen, H. C., Davis, T. N. and Winningham, J. D.: 1975, ‘Two Barium Plasma Injections into the Northern Magnetospheric Cleft’,Geophys. Res. Letters 2, 285.

    Google Scholar 

  • Kamiumura, T. and Dawson, J. M.: 1975, ‘Effect of Mirroring on Convective Transport in Plasmas’, University of California, Los Angeles, Rept. PPG-228.

    Google Scholar 

  • Kan, J. R.: 1976, ‘Energization of Auroral Electrons by Electrostatic Shock Waves’,J. Geophys. Res. 80, 2089.

    Google Scholar 

  • Kan, J. R. and Akasofu, S.-I.: 1976, ‘Energy Source and Mechanisms for Accelerating the Electrons and Driving the Field-Aligned CUrrents of the Discrete Auroral Arc’,J. Geophys. Res. 81, 5123.

    Google Scholar 

  • Knight, S.: 1973, ‘Parallel Electric Fields’,Planet. Space Sci. 21, 741.

    Google Scholar 

  • Knorr, G. and Goertz, C. K.: 1974, ‘Existence and Stability of Strong Potential Double Layers’,Astrophys. Space Sci. 31, 209.

    Google Scholar 

  • Langmuir, I.: 1929, ‘The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths’,Phys. Rev. 33, 954.

    Google Scholar 

  • Lemaire, J. and Scherer, M.: 1974, ‘Ionosphere-Plasma Sheet Field-Aligned Currents and Parallel Electric Fields’,Planet. Space Sci. 22, 1485.

    Google Scholar 

  • Lennartsson, W.: 1976, ‘On the Magnetic Mirroring as the Basic Cause of Parallel Electric Fields’,J. Geophys. Res. 81, 5583.

    Google Scholar 

  • Lennartsson, W.: 1977, ‘On the Role of Magnetic Mirroring in the Auroral Phenomena, TRIATA-EPP-77-11, Dept Plasma Physics, Royal Inst. Techn., Stockholm;Astrophys. Space Sci. (in press).

    Google Scholar 

  • McIlwain, C.: 1969, ‘Comments and Speculations Concerning the Radiation Belts’,IQSY 4, 302.

    Google Scholar 

  • Mozer, F. S.: 1976, ‘Magnetospheric DC Electric Fields: Present Knowledge and Outstanding Problems to be SOlved during the IMS’, in K. Knott and B. Battrick (eds.),The Scientific Satellite Program during the IMS, Reidel Publ. Co., p. 101.

  • Mozer, F. S., Hudson, N. K., Torbert, R. B., and Yattean, J.: 1977, ‘Observations of Paired Electrostatic Shocks in the Polar Magnetosphere’,Phys. Rev. Letters 38, 292.

    Google Scholar 

  • Newcomb, W. A.: 1958, ‘Motion of Magnetic Lines of Force’,Ann. Phys. 3, 347.

    Google Scholar 

  • Nishida, A.: 1976, ‘Outward Diffusion of Energetic Particles from the Jovian Radiation Belt’,J. Geophys. Res. 81, 1771.

    Google Scholar 

  • Pellinen, R., Welling, P. and Heikkila, W.: 1977, ‘Energization of Charged Particles to High Energies by an Induced Substorm Electric Field within the Magnetotail’, TRITA-EPP-77-10.

  • Persson, H.: 1963, ‘Electric Field Along a Magnetic Line of Force in a Low-Density Plasma’,Phys. Fluids 6, 1756.

    Google Scholar 

  • Persson, H.: 1966, ‘Electric Field Parallel to the Magnetic Field in a Low-Density Plasma’,Phys. Fluids 9, 1090.

    Google Scholar 

  • Quon, B. M. and Wong, A. Y.: 1976, ‘Formation of Potential Double Layers in Plasmas’,Phys. Rev. Letters 37, 1393.

    Google Scholar 

  • Rassbach, M. E.: 1973, ‘Upward Birkeland Currents’,J. Geophys. Res. 78, 7553.

    Google Scholar 

  • Roederer, J. G. and Hones, E. W.: 1974, ‘Motion of Magnetospheric Particle Clouds in a Time-Dependent Electric Field Model’,J. Geophys. Res. 79, 1432.

    Google Scholar 

  • Schrijver, H.: 1973a, ‘The Time Dependence of Turbulent Resistivity in a Linear Plasma Column’,Physica 70, 339.

    Google Scholar 

  • Shawhan, S. D., Fälthammar, C.-G. and Block, L. P.: 1977, ‘On the Nature of Large Auroral Zone Electric Fields of OneR E Altitude’, TRITA-EPP-77-09.

  • Siscoe, G. L.: 1973, ‘The Particle Environment in Space’, in R. J. L. Grard (ed.),Photon and Particle and Particle Interaction with Surfaces in Space, Reidel Publ. Co., p. 23.

  • Swift, D. W., Stenbeck-Nielsen, H. C. and Hallinan, T. J.: 1976, ‘An Equipotential Model for Auroral Arcs’,J. Geophys. Res. (in press).

  • Theodoridis, G. C., Paolini, F. R. and Frankenthal, S.: 1968, ‘Bimodal Diffusion in the Earth's Magnetosphere’,Ann. Geophys. 24, 999.

    Google Scholar 

  • Torvén, S.: 1965, ‘Spectroscopical Determination of the Atom Density in the Low Pressure Mercury Arc’,Arkiv. Fysik 29, 533.

    Google Scholar 

  • Torvén, S.: 1968, ‘Current Limitation and Electrical Gas Clean Up in a Low Pressure Mercury Discharge’,Arkiv. Fysik 35, 531.

    Google Scholar 

  • Torvén, S. and Babić, M.: 1975, ‘Current Chopping Space Charge Layers in a Low Pressure Arc Plasma’,Proc. 12th Int. Conf. on Phenomena in Ionized Gases, Eindhoven, Netherlands, 18–22 August, 1975, Pt 1, North-Holland Publ. Co., p. 124.

  • Torvén, S. and Babić, M.: 1976, ‘Current Limitation in Low Pressure Mercury Arcs’, Royal Institute of Technology, TRITA-EPP-76-09.

  • van Allen, J. A.: 1976, ‘On the Magnetospheres of Jupiter, Saturn and Uranus’, University of Iowa, Report 76-24.

  • Volland, H.: 1975a, ‘Differential Radiation of the Magnetospheric Plasma as a Cause of the Svalgard-Mansuror Effect’,J. Geophys. Res. 80, 2311.

    Google Scholar 

  • Volland, H.: 1975b, ‘Models of Global Electric Fields within the Magnetosphere’,Ann. Geophys. 31, 159.

    Google Scholar 

  • Wescott, E. M., Rieger, E. P., Stenback-Nielsen, H. C., Davis, T. N., Murray, W. B., Peck, H. M. and Bottoms, P. J.: 1975, ‘The Oosik Barium Plasma Injection Experiment and Magnetic Storm of March 7, 1972’,J. Geophys. Res. 80, 951.

    Google Scholar 

  • Wescott, E. M., Stenbeck-Nielsen, H. C., Hallinan, T. J. and Davis, T. N.: 1976, ‘The Skylab Plasma Injection Experiments 2. Evidence for a Double Layer’,J. Geophys. Res. 81, 4495.

    Google Scholar 

  • Whipple, E. C.: 1977, ‘The Signature of Parallel Electric Fields in a Collisionless Plasma’,J. Geophys. Res. 82, 1525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.

Reprinted, with due permission fromRev. Geophys. Space Phys. 15, (1977), 457

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fälthammar, CG. Problems related to macroscopic electric fields in the magnetosphere. Astrophys Space Sci 55, 179–201 (1978). https://doi.org/10.1007/BF00642588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00642588

Keywords

Navigation