Astrophysics and Space Science

, Volume 173, Issue 1, pp 109–125 | Cite as

Kelvin-Helmholtz instability of composite plasma in an oblique magnetic field with resistivity

  • R. K. Chhajlani
  • M. K. Vyas


The hydromagnetic K-H instability of two (one finitely conducting and another non-conducting) super-imposed fluids slipping past each other, with a relative velocity, in the presence of neutral particles for density discontinuity has been analyzed. The magnetic field is taken oblique to the interface. A general dispersion relation has been derived through proper boundary conditions. The general condition is discussed separately for the horizontal (parallel and perpendicular to the streaming) and the vertical magnetic field. The static fluid is considered as both finitely and infinitely conducting whereas the streaming fluid is non-conducting. It is observed that the presence of the neutral particles modifies the conditions of the ideal-plasma modes for both the horizontal and the vertical magnetic field. Furthermore, it is observed that the growth rate varies as the one-third power of the resistivity whereas the neutral particles merely change the constant of proportionality.


Boundary Condition Growth Rate Magnetic Field General Condition Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfvén, H.: 1954,On the Origin of the Solar System, Clarendon Press, Oxford.Google Scholar
  2. Bhatia, P. K. and Steiner, J. M.: 1974,Australian J. Phys. 27, 53.Google Scholar
  3. Chandrasekhar, S.: 1961,Hydrodynamic and Hydromagnetic Stability Clarendon Press, Oxford.Google Scholar
  4. Chhajlani, R. K. and Purohit, P.: 1985,Astrophys. Space Sci. 114, 311.Google Scholar
  5. Conway, G. D. and Elliott, J. A.: 1987,Plasma Phys. Cont. Fusion 29, 807Google Scholar
  6. Ershkovich, A. I.: 1980,Space Sci. Rev 25, 3.Google Scholar
  7. Ershkovich, A. I. and Dolan, J. F.: 1985,Astrophys. J. 293, 25.Google Scholar
  8. Fiedler, R. and Jones, T. W.: 1984,Astrophys. J. 283, 532.Google Scholar
  9. Gerwin, R. A.: 1968a,Rev. Mod. Phys. 10, 652.Google Scholar
  10. Gerwin, R. A.: 1968b,Phys. Fluids 11, 1699.Google Scholar
  11. Lehnert, B.: 1972,Electron and Plasma Physics, Roy. Inst. of Tech. Stockholm, Reps. TRITA EPP-72-05, TRITA-EPP-72-06.Google Scholar
  12. Miura, A. and Pritchett, P. L.: 1982,J. Geophys. Res. 87, 7431.Google Scholar
  13. Potemra, T. A., Doering, J. P., Peterson, W. K., Bostrom, C. O., Hofman, R. A., and Brace, L. H.: 1978,J. Geophys. Res. 83, 3877.Google Scholar
  14. Prialnik, D., Eviatar, A., and Ershkovich, A. I.: 1986,J. Plasma Phys. 35, 209.Google Scholar
  15. Sen, A. K.: 1963,Phys. Fluids 6, 1154.Google Scholar
  16. Sharma, R. C. and Shrivastava, K. M.: 1968,Australian J. Phys. 21, 917.Google Scholar
  17. Shivamoggi, B. K.: 1981,Phys. Scripta 24, 49.Google Scholar
  18. Talwar, S. P. and Kalra, G. L.: 1967,J. Plasma Phys. 1, 145.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • R. K. Chhajlani
    • 1
  • M. K. Vyas
    • 1
  1. 1.School of Studies in PhysicsVikram UniversityUjjainIndia

Personalised recommendations