Skip to main content
Log in

Annihilation radiation from thermal electron-positron plasma on the ground Landau level: The case of low magnetic fields

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The intensity and polarization of two-photon annihilation in a magnetic fuieldBB cr =4.4×1013 G are studied in detail for a, one-dimensional thermal distribution of annihilating electrons and positrons on the ground Landau level. With the increase of temperatureT the total annihilation rate and energy losses decrease, being higher than for the isotropic thermal distributions at the sameT. The shapes of intensity spectra at sin ϱ=0 (ϱ is the angle betweenB and wave-vector) are close to those in the isotropic case. The widths and blue-shifts of the spectra decrease with increasing sin ϱ and increase with increasingT. Logarthmic singularities arise in the spectra atE»mc 2/sin ϱ. Power-like parts are formed in the wings of the spectra forkTmc 2 and not too small sin ϱ. The direction-integrated spectra reach their (finite) maxima, atE=mc 2 for anyT. The radiation concentrates near the plane, perpendicular to the magnetic field forE close tomc 2 and is beamed along the magnetic field forE far frommc 2. Energy-integrated angular distributions are stretched alongB, the stronger the higherT. The rediation is linearly polarized in the plane formed by the magnetic field and weve-vector. Typical values of the polarization inside the cores of the annihilation spectra are ∼(kT/mc 2) sin ϱ and [ln (kT/mc 2)]−1 forkTmc 2 andkT sin ϱ≫mc 2, respectively. Annihilation radiation dominates over Bremsstrahlung in thee plasma atkT≲7mc 2. The results are useful for interpretation of the annihilation radiation in the gamma-ray bursts. They permit to estimate temperature, gravitational potential, and emission measure of radiating regions and the beaming of the radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonyan, F. A., Atoyan, A. M., and Sunyaev, R. A.: 1983,Astrophys. Space Sci. 93, 229.

    Google Scholar 

  • Akhiezer, A. I. and Berestetskii, V. B.: 1965,Quantum Electrodynamics, Interscience., New York.

    Google Scholar 

  • Alexanian, M.: 1968,Phys. Rev 165, 253.

    Google Scholar 

  • Aptekar, R. L., Golenetskii, S. V., Guryan, Yu. A., Ilyinskii, V. N., and Mazets, E. P.: 1985,19th Int. Cosmic Ray Conf. Papers 1, 7.

    Google Scholar 

  • Berestetskii, V. B., Lifshits, E. M. and Pitayevskii, L. P.: 1971,Relativistic Quantum Theory Part 1, Pergamon Press, Oxford.

    Google Scholar 

  • Daugherty, J. K. and Bussard, R. W.: 1980,Astrophys. J. 238, 296.

    Google Scholar 

  • Fenimore, E. E., Conner, J. P., Epstein, R. I., Klebesadel, R. W., Laros, J. G., and Yoshida, A.: 1988,Astrophys. J 335, L71.

    Google Scholar 

  • Ginzburg, V. L.: 1981,Theoretical Physics and Astrophysics Nauka, Moscow (in Russian).

    Google Scholar 

  • Golenetskii, S. V., Mazets, E. P., Aptekar, R. L., Guryan, Yu. A., and Ilyinskii, V. N.: 1986,Astrophys. Space Sci. 124, 243.

    Google Scholar 

  • Harding, A. K.: 1986,Astrophys. J. 300, 167.

    Google Scholar 

  • Kaminker, A. D., Pavlov, G. G., and Mamradze, P. G.: 1987,Astrophys. Space Sci. 138, 1.

    Google Scholar 

  • Kaminker, A. D., Pavlov, G. G., and Mamradze, P. G.: 1990,Proceedings of A. F. Ioffe Institute of Physics and Technology, Nova Science Publishers, New York.

    Google Scholar 

  • Lindblom, L., 1984,Astrophys. J. 278, 364.

    Google Scholar 

  • Matz, S. M., Forrest, D. J., Vestrund, W. T., Chupp, W. T., Share, G. H., and Rieger, E.: 1985,Astrophys. J. 288, L37.

    Google Scholar 

  • Mazets, E. P., Golenetskii, S. V., Aptekar, R. L., Guryan, Yu. A., and Ilyinskii, V. N.: 1981,Nature 290, 378.

    Google Scholar 

  • Murakami, T., Fujii, M., Hayashida, K., and Itoh, M.: 1988,Nature 335, 234.

    Google Scholar 

  • Nolan, P. L., Share, G. N., Matz, S. M., Chupp, E. L., Forrest, D. J., and Rieger, E.: 1984, in S. E. Woosley (ed.)High Energy Transients in Astrophysics, AIP Conf. Proc. No. 115, New York, p. 399.

  • Pavlov, G. G., and Golenetskii, S. V.: 1986,Astrophys. Space Sci. 128, 341.

    Google Scholar 

  • Ramaty, R. and Meszáros, P.: 1981,Astrophys. J. 250, 321.

    Google Scholar 

  • Svensson, R.: 1982a,Astrophys. J. 258, 321.

    Google Scholar 

  • Svensson, R.: 1982b,Astrophys. J.,258, 335.

    Google Scholar 

  • Ternov, I. M., Lysov, B. A., Dorofeev, O. F., and Pavlova, O. S.: 1968,Izv. Vuzov Fizika 3, 31.

    Google Scholar 

  • Wunner, G.: 1979.,Phys. Rev. Letters 42, 79.

    Google Scholar 

  • Wunner, G., Paez, J., Herold, H., and Ruder, H.: 1986,Astron. Astrophys. 170, 179.

    Google Scholar 

  • Zdziarski, A. A.: 1980,Acta Astron 30, 371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminker, A.D., Pavlov, G.G. & Mamradze, P.G. Annihilation radiation from thermal electron-positron plasma on the ground Landau level: The case of low magnetic fields. Astrophys Space Sci 174, 241–284 (1990). https://doi.org/10.1007/BF00642511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00642511

Keywords

Navigation