Advertisement

Astrophysics and Space Science

, Volume 133, Issue 2, pp 253–266 | Cite as

Disk galaxies and dynamical systems with non-negative curvature

  • V. G. Gurzadyan
  • A. A. Kocharyan
Article

Abstract

The stochastic and regular properties of disk stellar systems being dynamical systems with non-negative curvature are investigated. It is shown that the existence of regions of regular (ordered) and stochastic motion is their typical property (RS-systems). The stochastic regions of two-dimensional systems consisting of ergodic components with positive KS-entropy is shown not to be AnosovU-systems and to have no transversal fibers. As an example the Hénon-Heiles system is studied: the existence ofstrongly stable solutions is proved. The results indicate the crucial role of chaos and order in the dynamics of spiral galaxies of different classes.

Keywords

Dynamical System Crucial Role Stable Solution Typical Property Spiral Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anosov, D. V.: 1967,Comm. MIAN SSSR 90.Google Scholar
  2. Anosov, D. V. and Sinai, Ya. G.: 1967,UMN XXII, 107.Google Scholar
  3. Arnold, V. I.: 1979,Mathematical Methods of Classical Mechanics, Nauka, Moscow (in Russian).Google Scholar
  4. Benettin, G., Galgani, L., and Strelcyn, J. M.: 1976,Phys. Rev. 14, 2338.Google Scholar
  5. Contopoulos, G.: 1984, Preprint ESO, No. 342.Google Scholar
  6. Gromoll, D., Klingenberg, W., and Meyer, W.: 1968,Riemannische Geometrie in Grossen, Springer-Verlag, Berlin.Google Scholar
  7. Gurzadyan, V. G.: 1986, ‘Chaos and Order in the Universe’, inParticles and Cosmology, Moscow.Google Scholar
  8. Gurzadyan, V. G. and Kocharyan, A. A.: 1986a,Dokl. AN SSSR 287, 813.Google Scholar
  9. Gurzadyan, V. G. and Kocharyan, A. A.: 1986b, EPI-853(4), Yerevan;Dokl. AN SSSR 289, 60.Google Scholar
  10. Gurzadyan, V. G. and Kocharyan, A. A.: 1986c, EPI-871(22), Yerevan.Google Scholar
  11. Gurzadyan, V. G. and Savvidy, G. K.: 1983, EPI-678(68), Yerevan.Google Scholar
  12. Gurzadyan, V. G. and Savvidy, G. K.: 1984,Dokl. AN SSSR 277, 69.Google Scholar
  13. Gurzadyan, V. G. and Savvidy, G. K.: 1986,Astron. Astrophys. 160, 203.Google Scholar
  14. Gurzadyan, V. G., Kocharyan, A. A., and Matinyan, S. G.: 1986, EPI-852(3), Yerevan;Dokl. AN SSSR (in press).Google Scholar
  15. Hénon, M. and Heiles, C.: 1964,Astron. J. 69, 73.Google Scholar
  16. Klingenberg, W.: 1978,Lectures on Closed Geodesics, Springer-Verlag, Berlin.Google Scholar
  17. Kornfeld, I. P., Sinai, Ya. G., and Fomin, S. V.: 1980,Ergodic Theory, Nauka, Moscow (in Russian).Google Scholar
  18. Lichtenberg, A. J. and Lieberman, M. A.: 1983,Regular and Stochastic Motion, Springer-Verlag, Berlin.Google Scholar
  19. Matinyan, S. G.: 1985,F. E. Ch. A. Ya. 16, 522.Google Scholar
  20. Pesin, Ya. B.: 1977,UMN XXXII, 55.Google Scholar
  21. Pesin, Ya. B.: 1981,UMN XXXVI, 3.Google Scholar
  22. Poincaré, H.: 1892,Les méthodes nouvelles de la mécanique céleste, Gautier-Villars, Paris.Google Scholar
  23. Sinai, Ya. G.: 1970,UMN XXV, 141.Google Scholar
  24. Smale, S.: 1967,Bull. Am. Math. Soc. 73, 747.Google Scholar
  25. Zaslavsky, G. M.: 1984,Stochasticity of Dynamical Systems, Nauka, Moscow (in Russian).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • V. G. Gurzadyan
    • 1
  • A. A. Kocharyan
    • 1
  1. 1.Department of Theoretical PhysicsYerevan Physics InstituteYerevanArmenia, U.S.S.R.

Personalised recommendations