Astrophysics and Space Science

, Volume 28, Issue 1, pp 17–30 | Cite as

Empirical models of cosmic ray propagation in the Galaxy

  • V. S. Ptuskin
Article

Abstract

The homogeneous and flat diffusion models of the propagation of cosmic rays through the Galaxy are considered. It is shown that, with the usual choice of galactic parameters, in particular, those pertaining to its gas distribution, and subject to the restriction of not too heavy nuclei (nuclei no heavier than iron), both models are equivalent from the point of view of the description of the element composition of cosmic rays. This conclusion is justifiable both for galactic and metagalactic theories of the occurrence of cosmic rays. A connection is established between the effective path length of the matter which nuclei encounter in the Galaxy and the parameters of the diffusion model with an inhomogeneous distribution of an interstellar gas. Initial results allow the interpretation of a relationship of cosmic ray element composition to their energies. Restrictions which must be placed on such a relationship are shown from the different data on cosmic rays at the Earth.

Keywords

Iron Path Length Empirical Model Diffusion Model Element Composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apparao, Krishna M. V. and Rengarajan, T. N.: 1972, TIFR Preprint No. CR-NE-72-7.Astrophys. Space Sci. 19, 293.Google Scholar
  2. Audouze, J. and Cesarsky, C. J.: 1973,Nature, Phys. Sci. 241, 98.Google Scholar
  3. Bulanov, S. V. and Dogel, V. A.: 1974,Astrophys. Space Sci., in press.Google Scholar
  4. Bulanov, S. V., Dogel, V. A., and Syrovatskii, S. I.: 1972,Kosmich. Issled. 10, 532.Google Scholar
  5. Ginzburg, V. L. and Syrovatskii, S. I.: 1964,The Origin of Cosmic Rays, Pergamon Press.Google Scholar
  6. Ginzburg, V. L. and Syrovatskii, S. I.: 1971,12th Intern. Conf. on Cosmic Rays, Hobart, Invited and Reported Papers, p. 53.Google Scholar
  7. Ginzburg, V. L., Ptuskin, V. S., and Tsytovich, V. N.: 1973,Astrophys. Space Sci. 21, 13.Google Scholar
  8. Guet, F. le and Pacheco de Freitas, J. A.: 1973,Astron. Astrophys. 23, 337.Google Scholar
  9. Jones, F. C.: 1970,Phys. Rev. D,2, 2787.Google Scholar
  10. Juliusson, E., Meyer, P., and Müller, D.: 1972,Phys. Rev. Lett. 29, 445.Google Scholar
  11. Lingenfelter, R. E.: 1969,Nature 224, 1182.Google Scholar
  12. Ormes, J. F. and Blasubrahmanyan, V. K.: 1973,Nature, Phys. Sci. 241, 95.Google Scholar
  13. Pacheco de Freitas, J. A.: 1971,Astron. Astrophys. 13, 58.Google Scholar
  14. Ptuskin, V. S.: 1972,Kosmich. Issled. 10, 351.Google Scholar
  15. Sakakibara, S.: 1965,J. Geomagnet. Geoelec. 17, 99.Google Scholar
  16. Shapiro, M. M.: 1973,Bull. Amer. Phys. Soc., Ser.II, 18, 100.Google Scholar
  17. Shapiro, M. M. and Silberberg, R.: 1970,Ann. Rev. Nucl. Sci. 20, 323.Google Scholar
  18. Speller, R., Thambyaphillai, T., and Elliot, H.: 1972,Nature 235, 25.Google Scholar
  19. Syrovatskii, S. I.: 1971,Comments Astrophys. Space Sci. 3, 12.Google Scholar
  20. Webber, W. R., Damle, S. V., and Kish, J.: 1971,Astrophys. Lett. 9, 125.Google Scholar
  21. Webber, W. R., Lezniak, J. A., Kish, J., and Damle, S. V.: 1973,Nature Phys. Sci. 241, 96.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • V. S. Ptuskin
    • 1
  1. 1.P. N. Lebedev Physical InstituteU.S.S.R. Academy of SciencesMoscowU.S.S.R.

Personalised recommendations