Astrophysics and Space Science

, Volume 20, Issue 2, pp 287–305 | Cite as

A self-consistent two-dimensional approach to magnetospheric structures

  • M. Soop
  • K. Schindler
Article

Abstract

A simple self-consistent description of the geomagnetic tail is given and its consequences are explored. The model is two-dimensional, ignoring the spatial variation along the direction of the tail current. A discussion of equilibria is based on the assumption of an isotropic pressure. One of the conclusions is that the transition between the dipolar and the tail region will take place over a fairly short distance. The analytical results are supplemented by a numerical example. Properties of configurations containing field line loops are investigated. A stability discussion includes the effect of the net magnetic flux through the neutral sheet. The results have consequences for current magnetospheric problems.

Keywords

Spatial Variation Short Distance Magnetic Flux Field Line Tail Region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, M. P., Russell, C. T., and Kivelson, M. G.: 1970,J. Geophys. Res. 75, 7018.Google Scholar
  2. Bame, S. J.: 1968, in B. M. McCormac (ed.)Earth's Particles and Fields, Reinhold Book Corporation, New York, p. 373.Google Scholar
  3. Bame, S. J., Ashbridge, J. R., Felthauser, H. E., Hones, E. W., and Strong, I. B.: 1967,J. Geophys. Res. 72, 113.Google Scholar
  4. Behannon, K. W.: 1970,J. Geophys. Res. 75, 743.Google Scholar
  5. Biskamp, D., Dagdeev, R. Z., and Schindler, K.: 1970,Cosmic Electrodyn. 1, 297.Google Scholar
  6. Biskamp, D. and Schindler, K.: 1971,Plasma Phys. 13, 1013.Google Scholar
  7. Cole, G. H. A. and Schindler, K.: 1972, to appear inAstrophys. Space Sci. Google Scholar
  8. Coppi, B., Laval, G., and Pellat, R.: 1966,Phys. Rev. Letters 16, 1207.Google Scholar
  9. Coppi, B. and Rosenbluth, M. N.: 1968, inStability of Plane Plasmas, ESRO SP-36.Google Scholar
  10. Dickman, D. O., Morse, R. L., and Nielson, C. W.: 1969,Phys. Fluids 12, 1708.Google Scholar
  11. Frieman, E. A.: 1963,J. Math. Phys. 4, 410.Google Scholar
  12. Furth, H. P.: 1962,Nucl. Fusion Suppl., Pt. 1, 169.Google Scholar
  13. Furth, H. P., Killeen, J. and Rosenbluth, M. N.: 1963,Phys. Fluids,6, 459.Google Scholar
  14. Lackner, K.: 1970,J. Geophys. Res. 75, 3180.Google Scholar
  15. Laval, G. and Pellat, R.: 1968, inStability of Plane Plasmas, ESRO SP.-36.Google Scholar
  16. Laval, G., Pellat, R., and Vuillemin, M.: 1966, in,Plasma Physics and Controlled Nuclear Fusion Research (Vienna), Vol.,2, 259.Google Scholar
  17. Lenard, A.: 1959,Ann. Phys. 6, 261.Google Scholar
  18. Ness, N. F.: 1965,J. Geophys. Res. 70, 2989.Google Scholar
  19. Roederer, J. G.: 1969,Rev. Geophys. 7, 77.Google Scholar
  20. Schindler, K.: 1966,Proc. of the 7th International Conf. on Phenomena in Ionized Gases, Gradevinska Knigga, Belgrade, Yugoslavia, Vol. II, p. 736.Google Scholar
  21. Schindler, K.: 1972a, in B. M. McCormac (ed.),Earth's Magnetospheric Processes, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  22. Schindler, K.: 1972b, in C. P., Sonett, P. J. Coleman, Jr., and J. M. Wilcox (eds.),Solar Wind, NASA, Washington, D.C., NASA SP-308.Google Scholar
  23. Schindler, K. and Ness, N. F.: 1972,J. Geophys. Res. 77, 91.Google Scholar
  24. Schindler, K. and Soop, M.: 1968,Phys. Fluids 11, 1192.Google Scholar
  25. Vasyliunas, V. M.: 1968,J. Geophys. Res. 73, 2839.Google Scholar
  26. Vasyliunas, V. M.: 1970, in B. M. McCormac (ed.),Particles and Fields in the Magnetosphere, D. Reidel Publ. Co., p. 60.Google Scholar
  27. Williams, D. J. and Mead, G. D.: 1965,J. Geophys. Res. 70, 3017.Google Scholar

Copyright information

© D. Reidel Publishing Company 1973

Authors and Affiliations

  • M. Soop
    • 1
  • K. Schindler
    • 2
  1. 1.European Space Operation Center (ESOC)61 DarmstadtFRG
  2. 2.Max-Planck-Institut für extraterrestrische PhysikGarching bei MünchenFRG

Personalised recommendations