Advertisement

Astrophysics and Space Science

, Volume 145, Issue 2, pp 277–286 | Cite as

A class of semi-analytical solutions for a rotating toroidal plasma

  • A. H. Khater
  • M. G. El Sheikh
  • D. K. Callebaut
Article

Abstract

In this paper, the problem of stationary MHD flow for a rotating toroidal plasma is investigated by assuming that the entropy is a surface quantity. Then, the system of ideal MHD equations is reduced to a single second-order elliptic partial differential equation known as the modified Grad-Shafranov (or Maschke-Perrin) equation. Under the assumption that both the function,P s andf2 are quadratic polynomials of the flux function, a class of semi-analytical solutions is obtained for a plasma contained in a perfectly conducting toroidal boundary with a rectangular cross section. The flux function, poloidal current and the generalized pressure are obtained and discussed for relevant values of the parameters.

Keywords

Entropy Differential Equation Partial Differential Equation Rectangular Cross Section Quadratic Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. V., Barnes, D. C., and Seyler, C. E.: 1979,Bull. Am. Phys. Soc. 24, 988.Google Scholar
  2. Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M.: 1958,Proc. Roy. Soc. London A244, 1.Google Scholar
  3. Callebaut, D. C. and Khater, A. H.: 1977a,III Int. Conf. (Kiev) Trieste, Italy.Google Scholar
  4. Callebaut, D. C. and Khater, A. H.: 1977b,VIII Europe Conf. on Controlled Fusion and Plasma Phys., Prague, Czechoslovakia.Google Scholar
  5. Callebaut, D. C. and Khater, A. H.: 1979,Bull. Am. Phys. Soc. 24, 948.Google Scholar
  6. Callebaut, D. C. and Khater, A. H.: 1980,Proc. Int. Conf. Plasma Physics. 1, 10b-I-01.Google Scholar
  7. Chandrasekhar, S.: 1956,Proc. U.S. Nat. Acad. Sci. 43, 239.Google Scholar
  8. Chandrasekhar, S. and Fermi, E.: 1953,Astrophys. J. 118, 116.Google Scholar
  9. Clemente, R. A. and Farengo, R.: 1984,Phys. Fluids 27, 776.Google Scholar
  10. Copenhaver, C.: 1983,Phys. Fluids 26, 2635.Google Scholar
  11. Friedburg, J. P. and Pearlstein, L. D.: 1978,Phys. Fluids 21, 1207.Google Scholar
  12. Frieman, E. A. and Rotenberg, M.: 1960,Rev. Mod. Phys. 32, 898.Google Scholar
  13. Gibson, A.: 1983,Bull. Eur. Phys. Soc. 14, 3.Google Scholar
  14. Grad, H.: 1960,Rev. Mod. Phys. 32, 830.Google Scholar
  15. Grad, H. and Rubin, H.: 1958,Proc. II Int. Conf. on Peaceful Uses of Atomic Energy 31, 190.Google Scholar
  16. Hameiri, E.: 1983,Phys. Fluids 26, 230.Google Scholar
  17. Khater, A. H. Hammad, H. E., and Callebaut, D. K.: 1988,Simon-Stevin (to appear).Google Scholar
  18. Low, B. C.: 1975a,Astrophys. J. 197, 251.Google Scholar
  19. Low, B. C.: 1975b,Astrophys. J. 198, 211.Google Scholar
  20. Low, B. C.: 1980,Solar Phys. 65, 147.Google Scholar
  21. Maschke, E. K. and Perrin, H. J.: 1980,Plasma Phys. 22, 579.Google Scholar
  22. Shafranov, D.: 1959,Zh. Eksperim. Teor. Fiz. 108, (1960, SovietPhys. — JETP 37, 775).Google Scholar
  23. Soloviev, L. S.: 1967, in M. A. Leontovich (ed.),Rev. Plasma Phys. 3, 227.Google Scholar
  24. Tsinganos, K.: 1981,Astrophys. J. 245, 764.Google Scholar
  25. Tsinganos, K.: 1982a,Astrophys. J. 252, 775.Google Scholar
  26. Tsinganos, K.: 1982b,Astrophys. J. 259, 820.Google Scholar
  27. Tsinganos, K.: 1982c,Astrophys. J. 259, 832.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • A. H. Khater
    • 1
  • M. G. El Sheikh
    • 2
  • D. K. Callebaut
    • 3
  1. 1.Mathematics Department, Faculty of ScienceCairo UniversityBeni-SuefEgypt
  2. 2.Mathematics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  3. 3.Physics DepartmentUniversity of Antwerp (U.I.A.)AntwerpBelgium

Personalised recommendations