Astrophysics and Space Science

, Volume 49, Issue 2, pp 481–495 | Cite as

The dispersion relation of a gravitating spiral system

  • E. Evangelidis


The dispersion relation has been found for a galaxy, without the assumption that the centrifugal force is balanced by the gravitational force. It has been shown that such a system (1) can be gravitationally unstable under appropriate conditions, and (2) that there is no resonance at ω=2Ω (Ω=angular velocity of the Galaxy).


Angular Velocity Dispersion Relation Centrifugal Force Gravitational Force Spiral System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbanis, B.: 1970, in F. Becker and G. Contopoulos (eds.), ‘The Spiral Structure of our Galaxy’,IAU Symp. 38, 343.Google Scholar
  2. Chandrasekhar, S.: 1970,Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, p. 589.Google Scholar
  3. Evangelidis, E.: 1977,Astrophys. Space Sci. (in press).Google Scholar
  4. Ginzburg, V., Landau, L., Leontovich, A., and Fock, M.: 1946,Zh. Eksp. Teor. Fiz. 16, 256 (in Russian).Google Scholar
  5. Hodge, P. W.: 1966,The Physics and Astronomy of Galaxies and Cosmology, New York, McGraw-Hill.Google Scholar
  6. Jahnke, E. and Emde, F.: 1945,Tables of Functions, Dover Publ., p. 128.Google Scholar
  7. Landau, L.: 1946,Zh. Eksp. Teor. Fiz. 16, 574.Google Scholar
  8. Landau, L. D. and Lifshits, E. M.: 1970,Statistical Physics, Pergamon Press, p. 72.Google Scholar
  9. Lynden-Bell, D.: 1962,Monthly Notices Roy. Astron. Soc. 124, 279.Google Scholar
  10. Sandage, A.: 1975,Galaxies and the Universe, The University of Chicago Press, Vol. IX, p. 1.Google Scholar
  11. Vaucouleurs, G. de: 1959,Handbuch der Physik 53, 275.Google Scholar
  12. Vlasov, A.: 1938,Zh. Eksp. Teor. Fiz. 8, 291 (in Russian).Google Scholar
  13. Vlasov, A.: 1945,Zh. Eksp. Teor. Fiz. 9, 25.Google Scholar
  14. Watson, G. N.: 1966,Theory of Bessel Functions, (3rd ed.), Cambridge University Press, p. 360.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • E. Evangelidis
    • 1
  1. 1.Dept. of AstronomyUniversity of PatrasGreece

Personalised recommendations