Advertisement

The moon

, Volume 17, Issue 2, pp 133–147 | Cite as

ALSEP-quasar differential VLBI

  • Martin A. Slade
  • Robert A. Preston
  • Alan W. Harris
  • Lyle J. Skjerve
  • Donovan J. Spitzmesser
Article

Abstract

A program of ALSEP-Quasar Very Long Baseline Interferometry (VLBI) is being carried out at the Jet Propulsion Laboratory. These observations primarily employ a ‘4-antenna’ technique whereby simultaneous observations with two antennas at each end of an intercontinental baseline are used to derive the differential interferometric phase between a compact extragalactic radio source (usually a quasar) and a number of ALSEP transmitters on the lunar surface. A continuous ALSEP-quasar differential phase history over a few hour period will lead to milliarcsecond angular accuracy in measuring the lunar position against the quasar reference frame if suitable calibration measurements are obtained. Development of this application of the 4-antenna technique has been underway at JPL for more than a year and is now producing high quality data utilizing Deep Space Network (DSN) stations in Australia, Spain, and Goldstone, California as well as the STDN ‘Apollo’ station at Goldstone. These high accuracy observations are of value to tie the lunar ephemeris to a nearly inertial extragalactic reference frame, to test gravitational theories, and to measure the Earth-Moon tidal friction interaction.

Keywords

Radio Source Very Long Baseline Interferometry Lunar Surface Baseline Interferometry Interferometric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, P. L., Currie, D. G., Dicke, R. H., Eckhardt, D. H., Faller, J. E., Kaula, W. M., Mulholland, J. D., Plotkin, H. H., Poultney, S. K., Silverberg, E. C., Wilkinson, D. T., Williams, J. G., and Alley, C. O.: 1973, ‘The Lunar Laser Ranging Experiment’,Science 182, 229–238.Google Scholar
  2. Berman, A. L.: 1970, ‘A New Tropospheric Range Refraction Model’, inThe Deep Space Network, Space Programs Summary 37-65, Vol. II, pp. 140–163, Jet Propulsion Laboratory, Pasadena, Calif., September 30.Google Scholar
  3. Brans, C. and Dicke, R. H.: 1961, ‘Mach's Principle and a Relativistic Theory of Gravitation’,Phys. Rev. 124, 925–935.Google Scholar
  4. Burnell, H., Phillips, H. and Zanteson, R.: 1975, ‘Meteorological Monitoring Assembly’,JPL Deep Space Network Progress Report 42-29. Google Scholar
  5. Chao, C. C.: 1974, ‘The Tropospheric Calibration Model for Mariner Mars 1971’,Jet Propulsion Laboratory Technical Report 32-1587 (March 1).Google Scholar
  6. Clark, B. G.: 1973, ‘The NRAO Tape-Recorder Interferometer System’,Proc. IEEE 61, 1924–1248.Google Scholar
  7. Counselman III, C. C.: 1976, ‘Radio Astrometry’, inAnn. Rev. Astron. Astrophys. 14.Google Scholar
  8. Counselman III, C. C., Hinteregger, H. F., and Shapiro, I. I.: 1972, ‘Astronomical Applications of Differential Interferometry’,Science 178, 607–608.Google Scholar
  9. Counselman III, C. C., Hinteregger, H. F., King, R. W., and Shapiro, I. I.: 1973, ‘Lunar Baselines and Libration from Differential VLBI Observations of ALSEPS’,The Moon 8, 484–489.Google Scholar
  10. Counselman III, C. C., Kent, S. M., Knight, C. A., Shapiro, I. I., Clark, T. A., Hinteregger, H. F., Rodgers, A. E. F., and Whitney, A. R.: 1974, ‘Solar Gravitational Deflection of Radio Waves Measured by Very-Lomg-Baseline Interferometry’,Phys. Rev. Letters 33, 1621–1623.Google Scholar
  11. de Sitter, W.: 1916, ‘Planetary Motion and the Motion of the Moon According to Einstein's Theory’,Monthly Notices Roy. Astron. Soc. 76,Google Scholar
  12. Dicke, R. H.: 1966, ‘The Secular Acceleration of the Earth's Rotation and Cosmology’, inThe Earth-Moon System (ed. by B. G. Marsden and A. G. W. Cameron), Plenum, New York, pp. 98–164.Google Scholar
  13. Dickinson, D. F., Grossi, M. D., and Pearlman, M. R.: 1970, ‘Refractive Corrections in High-Accuracy Radio Interferometry’,J. Geophys. Res. 75, 1619–1621.Google Scholar
  14. Dirac, P. A. M.: 1938Proc. Roy. Soc. A. 165, 199.Google Scholar
  15. Hoyle, F.: 1972,Quart. J. Rev. Astron. Soc.,13, 328–329.Google Scholar
  16. Jones, H. S.: 1939, ‘The Rotation of the Earth and the Secular Acceleration of the Sun, Moon and Planets’,Monthly Notices Roy. Astron. Soc. 99, 541–558.Google Scholar
  17. Kaula, W. M. and Harris, A. W.: 1975, ‘Dynamics of Lunar Origin and Orbital Evolution’,Rev. Geophys. Space Phys. 13, 363–371.Google Scholar
  18. King, R. W.: 1975, ‘Precision Selenodesy via Differential Very-Long-Baseline-Interferometry’, Ph.D. Thesis, Massachusetts Institute of Technology.Google Scholar
  19. King, R. W., Counselman III, C. C., and Shapiro, I. I.: 1976, ‘Lunar Dynamics and Selenodesy: Results from Analysis of VLBI and Laser Data’,J. Geophys. Res. 81, 6251–6256.Google Scholar
  20. MacDoran, P. F.: ‘A First-Principles Derivation of the Differenced Range Versus Integrated Doppler (DRVID) Charged-Particle Calibration Method’,Space Programs Summary 37-62, Vol. II, February.Google Scholar
  21. Mathur, N. C., Grossi, M. D., and Pearlman, M. R.: 1970, ‘Atmospheric Effects in Very Long Baseline Interferometry’,Radio Sci. 5, 1253–1261.Google Scholar
  22. Michael, Jr., W. H., Clain, D. L., Fjeldbo, G., Levy, G. S., Davies, J. G., Grossi, M. D., Shapiro, I. I., and Tyler, G. L.: 1972, ‘Radio Science Experiments: The Viking Mars Orbiter and Lander’,Icarus 16, 57–73.Google Scholar
  23. Moran, J. M. and Penfield, H.: 1976, ‘Test and Evaluation of Water Vapor Radiometers and Determination of their Capability to Measure Tropospheric Propagation Path Length’, SAO Final Report Contract NAS5-20975.Google Scholar
  24. Moran, J. M. and Rosen, B. R.: 1975, ‘The Estimation of Tropospheric Propagation Path Length from Grand-Based Microwave Measurements’, presented at Annual Meet. U.S. National Comm. International Union of Radio Science, Boulder, Colorado.Google Scholar
  25. Muller, P. M. and Stephenson, F. R.: 1975, ‘The Acceleration of the Earth and Moon from Early Astronomical Observations’, inGrowth Rhythms and History of the Earth's Rotation (ed. by E. D. Rosenberg and S. K. Runcorn), John Wiley, New York.Google Scholar
  26. Preston, R. A., 1974, ‘Dual-Spacecraft Radio Metric Tracking’,JPL Deep Space Network Progress Report 42-22. Google Scholar
  27. Preston, R. A., Harris, A. W., Slade, M. A., Williams, J. G., Fanselow, J. L., Thomas, J. B., Morabito, D. D., Spitzmesser, D. J., Skjerve, L. J., Johnson, B., and Jauncey, D.: 1975, ‘JPL Catalog of VLBI Radio Sources’,Bull. AAS 7, 517.Google Scholar
  28. Reasenberg, R. D. and Shapiro, I. I.: 1975, ‘Bound on the Secular Variation of the Gravitational Interaction’, inProceedings of the 5th Conference on Atomic Masses and Fundamental Constants, Paris (in press).Google Scholar
  29. Resch, G. M.: 1975, ‘Comparison of Microwave Radiometric and In-Situ Measurements of Tropospheric Water Vapor’, presented at Annual Meet. U.S. National Comm. International Union of Radio Science, Boulder, Colorado.Google Scholar
  30. Robertson, D. S.: 1975, ‘Geodetic and Astrometric Measurements with Very-Long-Baseline Interferometry’, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.Google Scholar
  31. Schaper, L. W., Staelin, D. H., and Waters, J. W.: 1970, ‘The Estimation of Tropospheric Electrical Path Length by Microwave Radiometry’,Proc. Inst. Elec. Electron. Eng. 58, 272–273.Google Scholar
  32. Slade, M. A.: 1971, ‘The Orbit of the Moon’, Ph.D. Thesis, Massachusetts Institute of Technology.Google Scholar
  33. Slade, M. A., MacDoran, P. F., and Thomas, J. B.: 1972, ‘Very Long Baseline Interferometry (VLBI) Possibilities for Lunar Study’,JPL Technical Report, 32-1526, Vol. XII, pp. 35–39.Google Scholar
  34. Slade, M. A., Preston, R. A., Harris, A. W., Skjerve, L. J., and Spitzmesser, D. J.: 1976, ‘ALSEP-Quasar Differential VLBI’,Deep Space Network Progress Report 42-33, pp. 37–54, Jet Propulsion Laboratory, Pasadena, California, June 15.Google Scholar
  35. Slade, M. A., MacDoran, P. F., Shapiro, I. I., Spitzmesser, D. J., Gubbay, J., Legg, A., Robertson, D. S., and Skjerve, L.: 1974, ‘The Mariner 9 Quasar Experiment: Part I’,JPL Technical Report, 32-1526, Vol. XIX, pp. 31–35.Google Scholar
  36. Thomas, J. B., Fanselow, J. L., MacDoran, P. F., Spitzmesser, D. J., and Skjerve, L.: 1976, ‘Radio Interferometry Measurements of a 16-km Baseline with 4-cm Precision’,JPL Technical Report, 32-1526, Vol. XVIII.Google Scholar
  37. Van Flandern, T. C.: 1975, ‘A Determination of the Rate of Change of G’,Monthly Notices Roy. Astron. Soc. 170, 1.Google Scholar
  38. Weinberg, S.: 1972,Gravitation and Cosmology, John Wiley, New York.Google Scholar
  39. Williams, J. G., Slade, M. A., Eckhardt, D. H., and Kaula, W. M.: 1973, ‘Lunar Physical Libration and Laser Ranging’,The Moon 8, 469–483.Google Scholar
  40. Wittels, J. J.: 1975, ‘Positions and Kinematics of Quasars and Related Radio Objects Inferred from VLBI Observations’, Ph.D. Thesis, Massachusetts Institue of Technology, Cambridge, 194 pp.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1977

Authors and Affiliations

  • Martin A. Slade
    • 1
  • Robert A. Preston
    • 1
  • Alan W. Harris
    • 1
  • Lyle J. Skjerve
    • 1
  • Donovan J. Spitzmesser
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations