Advertisement

Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man

  • E. A. Koller
  • S. Drechsel
  • T. Hess
  • P. Macherel
  • U. Boutellier
Article

Summary

In order to anlayse the respiratory, cardiovascular, and ECG responses to acute hypoxic hypoxia, three experimental series were carried out in a randomized manner on 11 healthy, unacclimatized volunteers at rest during standardized stepwise exposure to 6000 m (PAO2 35.2±2.9 mmHg/4.7±0.4 kPa) in a low-pressure chamber a) without (control), b) with propranolol, and c) with atropine combined with propranolol. The results, show that hypoxic hyperventilation and alveolar gases are not affected by activation of the sympatho-adrenal axis or by parasympathetic withdrawal. Sympathetic activity, however, increases heart rate, stroke volume (pulse pressure), estimated cardiac output and systolic blood pressure, whereas decreased parasympathetic activity increases heart rate and estimated cardiac output, but lowers stroke volume. The fall in peripheral resistance, observed during progressive hypoxia in all three groups, is thought to be due to hypoxia-induced depression of the vasomotor center. At altitude catecholamine secretion and vagal withdrawal synergistically account in the ECG for the R-R shortening, the relative Q-T lengthening, the elevation of the P wave and the ST-T flattening. Probable direct hypoxic effects on the heart are the increase in P-Q duration and the minor but still significant depression of the T wave. It is concluded that at altitude increased sympatho-adrenal and decreased parasympathetic activity is without effect on hypoxic hyperventilation, but accounts for most of the cardiovascular and ECG changes. Diminution of sympathetic activity and imminent vagotonia arising after acute ascent to 6000 m probably reflect hypoxia of the central nervous system.

Key words

Autonomic control Respiration Circulation ECG Hypoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berne RM (1985) Some cardiovascular effects of adenosine. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL Press Limited. Oxford England, pp 357–370Google Scholar
  2. Bibermann L, Sarma RN, Surawicz B (1971) T-wave abnormalities during hyperventilation and isoproterenol infusion. Am Heart J 81:166–174Google Scholar
  3. Boutellier U, Koller EA (1981) Propranolol and the respiratory, circulatory, and ECG responses to high altitude. Eur J Appl Physiol 46:105–119Google Scholar
  4. Boutellier U, Kündig T, Gomez U, Pietsch P, Koller EA (1987) Respiratory phase detection and delay determination for breath-by-breath analysis. J Appl Physiol 62:837–843Google Scholar
  5. Bühlmann A (1965) Klinische Funktionsprüfung des Herzens. Schweiz Med Wochenschr 95:1327–1332Google Scholar
  6. Burgess MJ, Millar K, Abildskov JA (1969) Cancellation of electrocardiogram effects during ventricular recovery. J Electrocardiol 2:101–108Google Scholar
  7. Claustre J, Peyrin L (1982) Free and conjugated catecholamines and metabolites in cat urine after hypoxia. J Appl Physiol 52:304–308Google Scholar
  8. Cunningham WL, Becker EJ, Kreuzer F (1965) Catecholamines in plasma and urine at high altitude. J Appl Physiol 20:607–610Google Scholar
  9. Dauchot P, Gravenstein JS (1971) Effects of atropine on the electrocardiogram in different age groups. Clin Pharmacol Ther 12:274–280Google Scholar
  10. Downing SE (1966) Autonomic influences on cardiac function in systemic hypoxia. In: Hatcher JD, Jennings DB (eds) Proceedings of the International Symposium on the cardiovascular and respiratory effects of hypoxia. Karger, Basel New York, pp 208–231Google Scholar
  11. Gellhorn E, Lambert EH (1939) The vasomotor system in anoxia and asphyxia. The University of Illinois Press, Urbana, p 62Google Scholar
  12. Gowdey CW (1966) The autonomous nervous system in hypoxia. In: Hatcher JD, Jennings DB (eds) Proceedings of the International Symposium on the cardiovascular and respiratory effects of hypoxia. Karger, Basel New York, pp 232–247Google Scholar
  13. Gravenstein JS, Ariet M, Thornby JI (1969) Atropine on the electrocardiogram. Clin Pharmacol Ther 10:660–666Google Scholar
  14. Greene CW, Gilbert NC (1921) Studies on the responses on the circulation to low oxygen tension. III. Changes in the pacemaker and in conduction during extreme oxygen want as shown in the human. Arch Int Med 27:517–557Google Scholar
  15. Grover RF (1963) Basal oxygen uptake of man at high altitude. J Appl Physiol 18:909–912Google Scholar
  16. Hammill SC, Wagner WW jr, Latham LP, Frost WW, Weil JV (1979) Autonomic cardiovascular control during hypoxia in the dog. Circ Res 44:569–575Google Scholar
  17. Hegglin R, Holzmann M (1937) Die klinische Bedeutung der verlängerten QT-Distanz (Systolendauer) im Elektrokardiogramm. Z Klin Med 132:1–32Google Scholar
  18. Hinderling PH, Gundert-Remy U, Schmidlin O, Heinzel G (1985) Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans II: pharmacodynamics. J Pharmacol Sci 74:711–717Google Scholar
  19. Hoon RS, Sharma SC, Balasubramanian V, Chadha KS, Mathew OP (1976) Urinary catecholamine excretion on acute induction to high altitude (3658 m). J Appl Physiol 41:631–633Google Scholar
  20. Hopff L, Huber AK, Wyss OAM (1963) Studien zur Vektorkardiographie. III. Der Nachweis des Proximitätseffektes der vorderen Brustwandelektrode beim Menschen. Arch Kreislaufforsch 40:236–251Google Scholar
  21. Huang SY, Alexander JK, Grover RF, Maher JT, McCullough RE, McCullough RG, Moore LG, Weil JV, Sampson JB, Reeves JT (1984) Increased metabolism contributes to increased resting ventilation at high altitude. Respir Physiol 57:377–385Google Scholar
  22. Koizumi K, Terui N, Kollai M, Brooks CM (1982) Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc Natl Acad Sci USA 79:2116–2120Google Scholar
  23. Koller EA (1962) Die Wirkung von Micoren auf Atmung und Blutdruck. Helv Physiol Acta 20:97–113Google Scholar
  24. Koller EA, Boutellier U, Ziegler WH (1983) Zum Einfluß der Katecholamine und von Propranolol auf die akute Höhenanpassung des Menschen. Schweiz Med Wochenschr 113:1989–1999Google Scholar
  25. Kumada T, Gallagher KP, Shirato K, McKown D, Miller M, Kemper WS, White F, Ross J (1980) Reduction of exercise-induced regional myocardial dysfunction by propranolol. Circ Res 46:190–200Google Scholar
  26. Laciga P, Koller EA (1976) Respiratory, circulatory, and ECG changes during acute exposure to high altitude. J Appl Physiol 41:159–167Google Scholar
  27. Laciga P, Koller EA (1978) Respiratory, circulatory, and ECG changes at 6000 m and 7000 m. Experientia 34 (Abstr):900Google Scholar
  28. Lepeschkin E (1957) Das Elektrokardiogramm. Theodor Steinkopff, Dresden-Leipzig, p 304Google Scholar
  29. Pietsch P (1984) Das rechnerunterstützte Atmungsanalysesystem des Physiologischen Institutes Zürich. Thesis, University of ZurichGoogle Scholar
  30. Robinson S, Pearcy M, Brueckman FR, Nicholas JR, Miller D (1953) Effects of atropine on heart rate and oxygen intake in working man. J Appl Physiol 5:508–512Google Scholar
  31. Saurenmann P, Koller EA (1984) The ECG changes due to altitude and to catecholamines. Eur J Appl Physiol 53:35–42Google Scholar
  32. Scheer P, Albers D (1940) Ueber das P-Q Intervall im menschlichen Elektrokardiogramm. Z Kreislaufforsch 32:87–93Google Scholar
  33. Senges J, Henning E, Brachmann J, Pelzer D, Mizutani T, Kübler W (1980) Effects of orciprenaline on the sinoatrial and atrioventricular nodes in presence of hypoxia. J Mol Cell Cardiol 12:135–147Google Scholar
  34. Sjöstrand T (1956) Die pathologische Physiologie der Korrelation zwischen Herz- und Gefäßsystem. Verh Dtsch Ges Kreislaufforsch 22:143–157Google Scholar
  35. Thomsen JH, Wasserburger RH (1967) Effect of hyperventilation on precordial T waves of children and adolescents. Circulation 36:700–707Google Scholar
  36. Ury B, Gellhorn E (1939) Role of sympathetic system in reflex dilatation of pupil. J Neurophysiol 2:268–275Google Scholar
  37. Van Liere EJ, Stickney JC (1963) Hypoxia. University of Chicago Press, Chicago London, p 6 and p 214Google Scholar
  38. Weil JV, Byrne-Quinn E, Sodal IE, Kline JS, McCullough RE, Filley GF (1972) Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol 33:813–819Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • E. A. Koller
    • 1
  • S. Drechsel
    • 1
  • T. Hess
    • 1
  • P. Macherel
    • 1
  • U. Boutellier
    • 1
  1. 1.Department of PhysiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations