Astrophysics and Space Science

, Volume 61, Issue 2, pp 389–409 | Cite as

Three-dimensional periodic oscillations generating from plane periodic ones around the collinear Lagrangian points

  • C. G. Zagouras
  • P. G. Kazantzis
Article

Abstract

The three families of three-dimensional periodic oscillations which include the infinitesimal periodic oscillations about the Lagrangian equilibrium pointsL1,L2 andL3 are computed for the value μ=0.00095 (Sun-Jupiter case) of the mass parameter. From the first two vertically critical (|a v |=1) members of the familiesa, b andc, six families of periodic orbits in three dimensions are found to bifurcate. These families are presented here together with their stability characteristics. The orbits of the nine families computed are of all types of symmetryA, B andC. Finally, examples of bifurcations between families of three-dimensional periodic solutions of different type of symmetry are given.

Keywords

Periodic Solution Periodic Orbit Periodic Oscillation Mass Parameter Stability Characteristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, J. H.: 1964, Publ. Copenhagen Obs., No. 179.Google Scholar
  2. Bray, T. A. and Goudas, C. L.: 1967,Adv. Astron. Astrophys. 5, 71.Google Scholar
  3. Goudas, C. L.: 1963,Icarus 2, 1.Google Scholar
  4. Hénon, M.: 1965,Ann. Astrophys. 28, 499.Google Scholar
  5. Hénon, M.: 1973,Astron. Astrophys. 28, 415.Google Scholar
  6. Hénon, M.: 1974,Astron. Astrophys. 30, 317.Google Scholar
  7. Kazantzis, P. G.: 1979,Astrophys. Space Sci. (in press).Google Scholar
  8. Katsiaris, G. and Goudas, C. L.: 1973, in B. Tapley and V. Szebehely (eds.),Recent Advances in Dynamical Astronomy, p. 109.Google Scholar
  9. Markellos, V. V.: 1975,Astrophys. Space Sci. 36, 245.Google Scholar
  10. Moulton, F. R.: 1920,An Introduction to Celestial Mechanics, MacMillan, New York.Google Scholar
  11. Strömgren, E.: 1935, Publ. Copenhagen Obs., No. 100.Google Scholar
  12. Whittaker, E.: 1904,A Treatise on the Analytical Dynamics, Cambridge University Press, 1965.Google Scholar
  13. Zagouras, C. G.: 1977,Astrophys. Space Sci. 50, 383.Google Scholar
  14. Zagouras, C. G. and Kalogeropoulou, M.: 1978,Astron. Astrophys. Suppl. 32, 307.Google Scholar
  15. Zagouras, C. G. and Markellos, V. V.: 1977,Astron. Astrophys. 59, 79.Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • C. G. Zagouras
    • 1
  • P. G. Kazantzis
    • 2
  1. 1.Dept. of MechanicsUniversity of PatrasGreece
  2. 2.University of GlasgowUK

Personalised recommendations