Advertisement

Astrophysics and Space Science

, Volume 39, Issue 1, pp 213–234 | Cite as

The interaction of an obliquely incident plane electromagnetic wave with an anisotropic moving conducting half-space

  • P. K. Mukherjee
  • S. P. Talwar
Article

Abstract

The interaction of an obliquely incident plane electromagnetic wave with an anisotropic moving conducting medium described by tensor constitutive parameters\((\mathop \varepsilon \limits^ \leftrightarrow , \mathop {\mu ,}\limits^ \leftrightarrow and \mathop \sigma \limits^ \leftrightarrow )\) is studied. Starting from the Maxwell-Minkowski equations the wave solutions in the laboratory frame, the modified law of refraction and the reflecton and the transmission coefficients are obtained both for incidentE- andH-waves, corresponding to the two specific orientations of the plane of incidence relative to the direction of motion of the medium. The reflection and the transmission coefficients for a moving conducting medium do not, in general, add to unity resulting in the possibility of energy transference between the moving medium and the transmitted wave. Further the various reflection and transmission characteristics are modified in an interesting manner due to the finite conductivity, the anisotropy and the motion of the medium. Numerical results for the reflection and the transmission coefficients are presented for a range of the parameters characterizing the anisotropy and the velocity of the moving medium.

Keywords

Reflection Anisotropy Energy Transference Refraction Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brüesh, P.: 1973,Solid State Commun. 13, 13.Google Scholar
  2. Choi, S. D. and Dunn, D. A.: 1971,Proc. IEEE 59, 737.Google Scholar
  3. Dunn, D. A., Wallace, R. W., and Choi, S. D.: 1969,Proc. IEEE 57, 45.Google Scholar
  4. Fujioka, H., Nihel, F., and Kumagai, N.: 1968,J. Appl. Phys. 39, 2161.Google Scholar
  5. Mukherjee, P. K.: 1975,J. Appl. Phys.,46, 2295.Google Scholar
  6. Mukherjee, P. K. and Talwar, S. P.: 1973,Radio Sci. 8, 653.Google Scholar
  7. Mukherjee, P. K. and Talwar, S. P.: 1974,J. Appl. Phys. 45, 2521.Google Scholar
  8. Mukherjee, P. K. and Talwar, S. P.: 1975a,Astrophys. Space Sci.,33, 147.Google Scholar
  9. Mukherjee, P. K. and Talwar, S. P.: 1975b,Int. J. Electronics,38, 81.Google Scholar
  10. Pauli, W.: 1958,Theory of Relativity, Pergamon Press, New York, p. 103.Google Scholar
  11. Pyati, V. P.: 1967,J. Appl. Phys. 38, 652.Google Scholar
  12. Saha, A. R., Banerjee, P. K., and Das, A. K.: 1972,Proc. IEEE (Letters) 60, 140.Google Scholar
  13. Sam, C. L.: 1972,Phys. Rev. A5, 2670.Google Scholar
  14. Shiozawa, T., Hazama, K., and Kumagai, N.: 1967,J. Appl. Phys. 38, 4459.Google Scholar
  15. Shiozawa, T. and Hazama, K.: 1968,Radio Sci. 3, 569.Google Scholar
  16. Yeh, C.: 1965,J. Appl. Phys. 36, 3513.Google Scholar

Copyright information

© D. Reidel Publishing Company 1976

Authors and Affiliations

  • P. K. Mukherjee
    • 1
  • S. P. Talwar
    • 1
  1. 1.Dept. of Physics and AstrophysicsUniversity of DelhiIndia

Personalised recommendations