Advertisement

Astrophysics and Space Science

, Volume 149, Issue 2, pp 241–254 | Cite as

Abundance enhancements of silicon to iron in solar energetic particles and their implications

  • M. N. Vahia
  • S. Biswas
  • N. Durgaprasad
Article

Abstract

Differential energy spectra of low abundant elements between silicon and iron of energetic solar particles (SEP) in the August 4, 1972 event were measured in the energy region of 10 to 40 MeV amu−1 using rocket-borne Lexan detectors. The relative abundances of elements were determined and abundance enhancements, i.e., SEP/photospheric ratios, and their energy dependence were derived in 10–40 MeV amu−1 interval. It is found that there are four types of abundance enhancements as a function of energy as follows: (a) silicon, iron, and calcium show fairly strong energy dependence which decreases with increasing energy and at 20–40 MeV amu−1 reaches photospheric values; (b) in case of sulphur enhancement factors are independent of energy and the values are close to unity; (c) argon shows energy independent enhancements of about 3 to 4 in 10–40 MeV amu−1; (d) titanium and chromium show weakly energy-dependent, but very high abundance enhancement factor of about 10 to 40. These features are to be understood in terms of the atomic properties of these elements and on the physical conditions in the accelerating region. These are important not only for solar phenomena but also to gain insight into the abundance enhancements of cosmic-ray heavy nuclei.

Keywords

Silicon Energy Dependence Enhancement Factor Energetic Particle Heavy Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsch, D. L., Biswas, S., and Reames, D. V.: 1974,Solar Phys. 39, 479.Google Scholar
  2. Bertsch, D. L., Biswas, S., Fichtel, C. E., Pellerin, C. J., and Reames, D. V.: 1973,Solar Phys. 31, 247.Google Scholar
  3. Bertsch, D. L., Fichtel, C. E., and Reames, D. V.: 1972,Astrophys. J. 171, 169.Google Scholar
  4. Biswas, S. and Fichtel, C. E.: 1964,Astrophys. J. 139, 941.Google Scholar
  5. Biswas, S. and Fichtel, C. E.: 1965,Space Sci. Rev. 4, 709.Google Scholar
  6. Biswas, S., Durgaprasad, N., and Vahia, M. N.: 1983,Solar Phys.,8, 163.Google Scholar
  7. Brenema, H. R. and Stone, E.C.: 1985,Astrophys. J. 299, L57.Google Scholar
  8. Cook, W. R., Stone, E. C. and Vogt, R. E.: 1979,Proc. 16th ICRC,10, 265.Google Scholar
  9. Cook, W. R., Stone, E. C., and Vogt, R. E.: 1984,Astrophys. J.,279, 827.Google Scholar
  10. Crawford, H. J., Price, P. B., Cartwright, B. G., and Sullivan, J. D.: 1975,Astrophys. J. 195, 213.Google Scholar
  11. Durgaprasad, N., Fichtel, C. E., Guss, D. E., and Reames, D. V.: 1968,Astrophys. J. 154, 307.Google Scholar
  12. Durgaprasad, N., Nevatia, J., and Biswas, S.: 1982,Nucl. Inst. Methods 199, 573.Google Scholar
  13. Fan, C. Y., Gloeckler, G., and Hovestadt, D.: 1984,Space Sci. Rev. 38, 143.Google Scholar
  14. Fleischer, R. L., Price, P. B., and Walker, R. M.: 1975,Nuclear Tracks in Solids, Univ. of California Press, California.Google Scholar
  15. Grevesse, N.: 1976.Trans. of IAU XVI B 116.Google Scholar
  16. Grevesse, N.: 1984,Phys. Scripta T8, 49.Google Scholar
  17. Henke, R. P. and Benton, E. V.: 1981,Nucl. Inst. Methods 97, 483.Google Scholar
  18. Hirayama, T.: 1971,Solar Phys. 19, 384.Google Scholar
  19. Lambert, D. L.: 1967,Observatory 87, 228.Google Scholar
  20. Lambert, D. L.: 1968,Monthly Notices Roy. Astron. Soc. 138, 79.Google Scholar
  21. Luhn, A., Hovestadt, D., Klecker, B., Scholer, M., Gloeckler, G., Ipavich, F. M., Galvin, A. B., Fan, C. Y., and Fisk, L. A.: 1985,Proc. 19th ICRC 4, 241.Google Scholar
  22. McGuire, R. E., von, Rosenvinge, T. T., and McDonald, F. B.: 1986,Astrophys. J. 301, 938.Google Scholar
  23. Meyer, J. P.: 1985,Astrophys. J. Suppl. 57, 151.Google Scholar
  24. Meyer, J. P. and Reeves, H.: 1977,Proc. 15th ICRC 2, 137.Google Scholar
  25. Pagel, B. E. J.: 1973,Space Sci. Rev. 15, 1.Google Scholar
  26. Pagel, B. E. J.: 1979, in L. H. Ahrens (ed.)Origin and Distribution of Elements, Pergamon Press, Oxford, p. 79.Google Scholar
  27. Price, P. B. and Fleischer, R. L.: 1971,Ann. Rev. Nucl. Sci. 21, 295.Google Scholar
  28. Ross, J. E. and Aller, L. H.: 1976,Science 191, 1223.Google Scholar
  29. Simpson, J. A.: 1983,Ann. Rev. Nucl. Part. Sci. 33, 323.Google Scholar
  30. Švestka, Z.: 1981, in E. R. Priest (ed.)Solar Flare Magnetohydrodynamics, Gordon and Breach Sci. Publ., New York, p. 47.Google Scholar
  31. Vahia, M. N.: 1983, Ph.D. Thesis, University of Bombay.Google Scholar
  32. Vahia, M. N.: 1987,Astron. Astrophys. 173, 361.Google Scholar
  33. Vahia, M. N.: 1988,Astron. Astrophys. (in press).Google Scholar
  34. Vahia, M. N. and Biswas, S.: 1981, in M. M. Shapiro (ed.),Composition and Origin of Cosmic Rays, D. Reidel Publ. Co., Dordrecht, Holland, p. 155.Google Scholar
  35. Vahia, M. N., Biswas, S., and Durgaprasad, N.: 1985,Proc. 19th ICRC 4, 221.Google Scholar
  36. Vaisberg, O. L. and Zastenker, G. N.: 1976,Space Sci. Rev. 19, 687.Google Scholar
  37. Webber, W. R.: 1982,Astrophys. J. 199, 482.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • M. N. Vahia
    • 1
  • S. Biswas
    • 1
  • N. Durgaprasad
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations