Skip to main content
Log in

Local galactic field of forces and the interstellar matter

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The density distributions of the two main components in interstellar hydrogen are calculated using 21 cm line data from the Berkeley Survey and the Pulkovo Survey. The narrow, dense component (state I of neutral hydrogen) has a Gaussianz-distribution with a scale-height of 50 pc in the local zones (the galactic disk). For the wide, tenuous component (hydrogen in state II) we postulate a distribution valid in the zones where such a material predominates (70 pc≲z≲ 350 pc the galactic stratum) i.e.,

$$n_H \left( z \right) = n_H \left( 0 \right)exp \left( { - \left( {z/300{\text{ }}pc} \right)^{3/2} } \right).$$

Similar components are found in the dust distribution and in the available stellar data reaching sufficiently highz-altitudes. The scale-heights depend on the stellar type: the stratum in M III stars is considerably wider than in A stars (500–700 pc against 300 pc).

The gas to dust ratio is approximately the same in both components: 0.66 atom cm−3 mag−1 kpc in the galactic plane. A third state of the gas is postulated associating it the observed free electron stratum at a scale-height of 660 pc (hydrogen fully ionized at high temperatures).

The ratio between the observed dispersions in neutral hydrogen (thermal width plus turbulence) and the total dispersions corresponding to the real inner energies in the medium is obtained by a comparison with the dispersion distribution σ(z) of the different stellar types associated with the disk and the stratum

$$\sigma ^2 \left( {total} \right) = \sigma ^2 \left( {21{\text{ cm line}}} \right) \cdot {\text{ }}Q^2 ,$$

from which we graphically obtainedQ 2=2.9 ± 0.3, although that number could be lower in the densest parts of the spiral arms. Its dependence on magnetic field and cosmic rays is analysed, indicating equipartition of the different energy components in the interstellar medium and consistency with the observed values of the magnetic field: i.e., fluctuations with an average of ∼ 3 μG (associated with the disk) in a homogeneous background of ∼ 1 μG (associated with the stratum).

A minimum and maximumK z-force are obtained assuming extreme conditions for the total density distribution (gas plus stars). TheK z-force obtained from the interstellar gas in its different states using approximations of the Boltzmann equation is a reasonable intermediate case between maximum and minimumK z. The mass density obtained in the galactic plane is 0.20±0.05M pc−3, and the results indicate that the galactic disk is somewhat narrower and denser than has usually been believed.

The effects of wave-like distributions of matter in thez-coordinate are analysed in relation with theK z-force, and comparisons with theoretical results are performed.

A qualitative model for the galactic field of force is postulated together with a classification of the different zones of the Galaxy according to their observed ranges in velocity dispersions and the behaviour of the potential well at differentz-altitudes. The disk containing at least two-thirds of the total mass atz<100 pc, the stratum containing one-third or less of the total mass atz≤600–800 pc, and the halo at higherz-altitudes with a small fraction of such a mass which is difficult to evaluate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1973,Astrophysical Quantities (3rd edn), Athlone Press, University of London.

  • Bohlin, R. C., Savage, B. D. and Drake, J. F.: 1978,Astrophys. J. 224, 132.

    Google Scholar 

  • Bystrova, N. V. and Rajimov, J. A.: 1977, inPulkovo Survey in Neutral Hydrogen Line, Part III, private communication.

  • Celnik, W.: 1977, private communication.

  • de Jong, T.: 1977,Astron. Astrophys. 55, 137.

    Google Scholar 

  • Eggen, O. J., Lynden-Bell, D. and Sandage, A. R.: 1962,Astrophys. J. 136, 748.

    Google Scholar 

  • Falgarone, E. and Lequeux, J.: 1973,Astron. Astrophys. 25, 253.

    Google Scholar 

  • Giovanelli, R. and Brown, R. L.: 1973,Astrophys. J. 182, 755.

    Google Scholar 

  • Gliese, W.: 1956,Z. Astrophys. 39, 1.

    Google Scholar 

  • Heiles, C.: 1976,Ann. Rev. Astron. Astrophys. 14, 1.

    Google Scholar 

  • Herbst, E. and Klemperer, W.: 1973,Astrophys. J. 185, 505.

    Google Scholar 

  • Hill, E. R.P 1959,Bull. Astr. Inst. Netherlands 15, 1 (No. 494).

    Google Scholar 

  • Jones, D. H.: 1972,Astrophys. J. 178, 467.

    Google Scholar 

  • Kellman, S. A.: 1972,Astrophys. J. 175, 363.

    Google Scholar 

  • Lazareff, B.: 1975,Astron. Astrophys. 42, 25.

    Google Scholar 

  • Ledoux, S.: 1951,Ann. d'Astrophys. 14, 438.

    Google Scholar 

  • Manchester, R. N.: 1974,Astrophys. J. 188, 637.

    Google Scholar 

  • Mebold, U.: 1972,Astron. Astrophys. 19, 13.

    Google Scholar 

  • Nelson, A. H.: 1976,Monthly Notices Roy. Astron. Soc. 174, 661.

    Google Scholar 

  • Nelson, A. H.: 1978, private communication.

  • Oort, J. H.: 1960,Bull. Astr. Inst. Netherlands 15, 45 (No. 494).

    Google Scholar 

  • Paul, J., Cassé, M. and Cesarsky, C. J.: 1976,Astrophys. J. 207, 62.

    Google Scholar 

  • Perry, C. L.: 1969,Astron. J. 74, 139.

    Google Scholar 

  • Pim-Fitzgerald, M.: 1968,Astron. J. 73, 983.

    Google Scholar 

  • Quiroga, R. J.: 1974,Astrophys. Space Sci. 27, 323.

    Google Scholar 

  • Quiroga, R. J.: 1975,Astrophys. Space Sci. 35, 67.

    Google Scholar 

  • Quiroga, R. J.: 1977,Astrophys. Space Sci. 50, 281.

    Google Scholar 

  • Quiroga, R. J.: 1978,Astrophys. Space Sci. 53, 295.

    Google Scholar 

  • Quiroga, R. J. and Schlosser, W.: 1977,Astron. Astrophys. 57, 455.

    Google Scholar 

  • Redhead, A. C. and Duffett-Smith, P. J.: 1975,Astron. Astrophys. 42, 151.

    Google Scholar 

  • Rohlfs, K.: 1978,Dynamical Astronomy (in preparation).

  • Schlosser, W., Schmidt-Kaler, Th. and Hünecker, W.: 1976,Atlas der Milchstrasse, Ruhr Universität, Bochum.

    Google Scholar 

  • Schlosser, W. and Schmidt-Kaler, Th.: 1978, in preparation.

  • Schmidt-Kaler, Th. and Schlosser, W.: 1973,Astron. Astrophys. 25, 191.

    Google Scholar 

  • Schmidt-Kaler, Th. and House, F.: 1974,Astron. Nachr. 297, 77.

    Google Scholar 

  • Spitzer, L.: 1968,Diffuse Matter in Space, Wiley, New York.

    Google Scholar 

  • Weaver, H. and Williams D. R.: 1973,Astron. Astrophys. Suppl. 8, 1.

    Google Scholar 

  • Weaver, H. and Williams, D. R.: 1974,Astron. Astrophys. Suppl. 17, 1.

    Google Scholar 

  • Woolley, R. and Stewart, J. M.: 1967,Monthly Notices Roy. Astron. Soc. 136, 329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroga, R.J. Local galactic field of forces and the interstellar matter. Astrophys Space Sci 68, 393–422 (1980). https://doi.org/10.1007/BF00639707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00639707

Keywords

Navigation