Advertisement

Astrophysics and Space Science

, Volume 126, Issue 2, pp 313–327 | Cite as

Frame transformation of spherical-harmonic coefficients of differential particle intensity

  • C. K. Ng
Article

Abstract

We present a general second-order-correct frame transformation on spherical-harmonic coefficients of differential particle intensity. The transformation, valid for relativistic particles as well, provides a clear view of the Compton-Getting effect. It shows explicitly how each transformed harmonic coefficient depends on a subset of the original harmonic coefficients. The general expression for the first-order Compton-Getting vector anisotropy is derived and interpreted. In addition, we show how the new transformation allows one to simplify a current procedure for determining the directional intensity in a comoving frame. This involves the directional particle data measured on a spacecraft.

Keywords

General Expression Anisotropy Particle Intensity Relativistic Particle Clear View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balogh, A., Webb, S., and Forman, M. A.: 1973,Planetary Space Sci. 21, 1802.Google Scholar
  2. Burger, R. A., Moraal, H., and Webb, G. M.: 1985,Astrophys. Space Sci., submitted.Google Scholar
  3. Compton, A. H. and Getting, I. A.: 1935,Phys. Rev. 47, 817.Google Scholar
  4. Erdös, G.: 1981,Proc. 17th Int. Conf. Cosmic Rays, Paris, Paper T5-14.Google Scholar
  5. Forman, M. A.: 1970a,Planetary Space Sci. 18, 25.Google Scholar
  6. Forman, M. A.: 1970b,J. Geophys. Res. 75, 3147.Google Scholar
  7. Forman, M. A. and Gleeson, L. J.: 1975,Astrophys. Space Sci. 32, 77.Google Scholar
  8. Gleeson, L. J.: 1969,Planetary Space Sci. 17, 31.Google Scholar
  9. Gleeson, L. J. and Axford, W. I.: 1968,Astrophys. Space Sci. 2, 431.Google Scholar
  10. Gold, R. E., Bostrom, C. O., and Roelof, E. C.: 1975,Proc. 14th Int. Conf. Cosmic Rays, Munich 5, 1801.Google Scholar
  11. Ipavich, F. M.: 1974,Geophys. Res. Letters 1, 149.Google Scholar
  12. Magnus, W., Oberhettinger, F., and Soni, R. P.: 1966,Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York.Google Scholar
  13. Ng, C. K.: 1971,Solar Phys. 20, 166.Google Scholar
  14. Ng, C. K.: 1984,Dept. of Maths/Univ. of Malaya Res. Report, No. 15/84.Google Scholar
  15. Sanderson, T. R., Reinhard, R., van Nes, P., and Wenzel, K. P.: 1985,J. Geophys. Res. 90, 19.Google Scholar
  16. Synge, J. L.: 1957,The Relativistic Gas, North-Holland Publ. Co., Amsterdam.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • C. K. Ng
    • 1
  1. 1.Dept. of MathematicsUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations