Astrophysics and Space Science

, Volume 72, Issue 2, pp 323–345 | Cite as

Propagation of axi-symmetric relativistic shock waves

  • G. Deb Ray
  • T. K. Chakraborty
  • S. N. Banerjee
Article
  • 28 Downloads

Abstract

Solutions in series for the propagation of relativistic shock waves with axial symmetry are obtained in this paper. We assume that the gaseous elements move almost radially and that the disturbance moves through a cold gas at rest wherein the nucleon number density and the energy density obey an exponential law of distance from a given plane. The motion is sustained by continuous explosions in the central region liberating energy varying as the cube of time. Also, we assume the equation of state of the moving elements as that of photonic gas.

Keywords

Shock Wave Energy Density Central Region Axial Symmetry Relativistic Shock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, G. G., Kuhl, A. L. and Oppenheim, A. K.: 1975,J. Fluid Mech. 71, 105.Google Scholar
  2. Israel, W.: 1960,Proc. Roy. Soc. (Lond.) A 259, 129.Google Scholar
  3. Forsythe, G. E., Malcolm, M. A. and Moler, C. B.: 1977,Computer Methods for Mathematical Computations, Prentice-Hall Inc.Google Scholar
  4. Jeffrey, A. and Taniuti, T.: 1964,Non-linear Wave Propagation with Applications to Physics and Magnetohydrodynamics, Academic Press.Google Scholar
  5. Laumbach, D. D. and Probstein, R. F.: 1969,J. Fluid Mech. 35, 53.Google Scholar
  6. Pekeris, C. L.: 1977,Proc. Roy. Soc. (Lond.) A 355, 53.Google Scholar
  7. Sakurai, A.: 1954,J. Phys. Soc. Japan 8, 662.Google Scholar
  8. Sakurai, A.: 1954,J. Phys. Soc. Japan 9, 256.Google Scholar
  9. Taub, A. H.: 1948,Phys. Rev. 74, 328.Google Scholar
  10. Taylor, G. I.: 1946,Proc. Roy. Soc. (Lond.) A 186, 273.Google Scholar
  11. Taylor, G. I.: 1950,Proc. Roy. Soc. (Lond.) A 201, 159.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1980

Authors and Affiliations

  • G. Deb Ray
    • 1
  • T. K. Chakraborty
    • 1
  • S. N. Banerjee
    • 2
  1. 1.Dept of MathematicsSt Xavier's CollegeCalcuttaIndia
  2. 2.Regional Computer CentreCalcuttaIndia

Personalised recommendations