Skip to main content
Log in

Oscillatory cosmic-ray shock structures

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A multiple scales analysis is used to derive a mixed Burgers-Korteweg-de Vries (BKdV) equation in the long wavelength regime for a two-fluid MHD model used to describe cosmic-ray acceleration by the first-order Fermi process in astrophysical shocks. The BKdV equation describes the time evolution of weak shocks in the theory of diffusive shock acceleration for all possible cosmic-ray pressures. Previous work on weak shocks in the cosmic-ray MHD model has assumed that dissipation alone is sufficient to balance nonlinearity, but, as cosmic-ray pressures become small, the weak shock becomes discontinous. By including Hall current effects into the MHD model, the low cosmic-ray pressure limit leads smoothly into solitary wave behaviour. For low cosmic-ray pressures, the shock has a downstream oscillatory precursor which is smoothed into the standard Taylor shock profile with increasing cosmic-ray pressure. As a by-product of the perturbation analysis, a dissipative KdV equation is derived. In conclusion, dispersive effects on Alfvén waves are discussed and a modulational stability analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axford, W. I., Leer, E., and Skadron, G.: 1977,Proc. 15th Int. Cosmic Ray Conf. (Plovdiv) 11, 132.

    Google Scholar 

  • Axford, W. I., Leer, E. and McKenzie, J. F.: 1982,Astron. Astrophys. 111, 317.

    Google Scholar 

  • Bell, A. R.: 1978a,Monthly Notices Roy. Astron. Soc.,182, 147.

    Google Scholar 

  • Bell, A. R.: 1978b,Monthly Notices Roy. Astron. Soc. 182, 443.

    Google Scholar 

  • Blandford, R. D. and Eichler, D.: 1987,Phys. Reports 154, 1.

    Google Scholar 

  • Blandford, R. D. and Ostriker, J. P.: 1978,Astrophys. J. 221, L29.

    Google Scholar 

  • Drury, L. O'C.: 1983,Rep. Prog. Phys. 46, 973.

    Google Scholar 

  • Drury, L. O'C., Axford, W. I., and Summers, D.: 1982,Monthly Notices Roy. Astron. Soc. 198, 833.

    Google Scholar 

  • Drury, L. O'C. and Falle, S. A. E. G.: 1986,Monthly Notices Roy. Astron. Soc. 223, 353.

    Google Scholar 

  • Drury, L. O'C. and Völk, H. J.: 1981,Astrophys. J. 248, 344.

    Google Scholar 

  • Eichler, D.: 1979,Astron. Astrophys. 228, 419.

    Google Scholar 

  • Eichler, D.: 1981,Phys. Rev. Letters 47, 21, 1560.

    Google Scholar 

  • Frenzen, C. L. and Kevorkian, J.: 1985,Wave Motion 7, 25.

    Google Scholar 

  • Grad, H. and Hu, P. N.: 1967,Phys. Fluids,10, 2596.

    Google Scholar 

  • Heavens, A.: 1983,Monthly Notices Roy. Astron. Soc. 204, 699.

    Google Scholar 

  • Jeffrey, A.: 1979,Arch. Mech. 31, 4, 559.

    Google Scholar 

  • Johnson, R. S.: 1970,J. Fluid Mech. 42, 49.

    Google Scholar 

  • Kakutani, T. and Ono, H.: 1969,J. Phys. Soc. Japan 26, 1305.

    Google Scholar 

  • Kevorkian, J. and Cole, J. D.: 1981,Perturbation Methods in Applied Mathematics, Springer-Verlag, Berlin.

    Google Scholar 

  • Krymsky, G. F.: 1977,Dokl. Akad. Nauk. SSSR 234, 1306.

    Google Scholar 

  • Krymsky, G. F.: 1981,Izv. A.N. SSSR Ser. Phys. 45, 461.

    Google Scholar 

  • Lagage, P. O. and Cesarsky, C. J.: 1983,Astron. Astrophys. 125, 249.

    Google Scholar 

  • Lighthill, M. J.: 1965,J. Inst. Math. Appl. 1, 269.

    Google Scholar 

  • Leer, E., Skadron, G., and Axford, W. I.: 1976,EOS 57, 980.

    Google Scholar 

  • McKenzie, J. F. and Völk, H. J.: 1982,Astron. Astrophys. 116, 191.

    Google Scholar 

  • Mio, K., Ogino, T., Minami, K., and Takeda, S.: 1976a,J. Phys. Soc. Japan 41, 265.

    Google Scholar 

  • Mio, K., Ogino, T., Minami, K., and Takeda, S.: 1976b,J. Phys. Soc. Japan 41, 667.

    Google Scholar 

  • Mjølhus, E.: 1976,J. Plasma Phys. 16, 321.

    Google Scholar 

  • Spangler, S. R. and Sheer, J. P.: 1982,J. Plasma Phys. 27, 193.

    Google Scholar 

  • Tidman, D. A. and Krall, N. A.: 1971,Shock Waves in Collisionless Plasmas, Wiley-Interscience, New York.

    Google Scholar 

  • Van Dyke, M.: 1975,Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford.

    Google Scholar 

  • Völk, H. J.: 1984, in J. Tran Thanh Van (ed.), ‘High Energy Astrophysics’,Proc. of the XIXth Rencontre de Moriond Astrophysics Meeting, p. 281.

  • Völk, H. J.: 1986, preprint, MPI H-1986-V20.

  • Völk, H. J., Drury, L. O'C., and McKenzie, J. F.: 1984,Astron. Astrophys. 130, 19.

    Google Scholar 

  • Wandel, A., Eichler, D., Letaw, J. R., Silberberg, R., and Tsao, C. H.: 1987,Astrophys. J. 316, 676.

    Google Scholar 

  • Webb, G. M.: 1983,Astron. Astrophys. 127, 97.

    Google Scholar 

  • Webb, G. M.: 1985,Astrophys. J. 296, 319.

    Google Scholar 

  • Webb, G. M.: 1987,Astrophys. J. (to appear).

  • Webb, G. M. and McKenzie, J. F.: 1984,J. Plasma Phys. 31, 337.

    Google Scholar 

  • Whitham, G. B.: 1965,J. Fluid Mech. 22, 273.

    Google Scholar 

  • Zank, G. P. and McKenzie, J. F.: 1986,J. Plasma Phys. (to appear).

  • Zank, G. P., Webb, G. M., and McKenzie, J. F.: 1987,Astron. Astrophys. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zank, G.P. Oscillatory cosmic-ray shock structures. Astrophys Space Sci 140, 301–324 (1988). https://doi.org/10.1007/BF00638986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00638986

Keywords

Navigation