Skip to main content
Log in

Effects of nitrogen on hydrogen embrittlement in AlSl type 316, 321 and 347 austenitic stainless steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement of AlSl type 316, 321 and 347 stainless steels with nitrogen alloying has been studied by a tensile test through cathodic charging. The results show that addition of nitrogen improved resistance to hydrogen cracking regardless of the failure mode. Fracture surfaces of cathodically charged steels showed intergranular brittle zones on each side of the fracture surfaces. AlSl type 316 with nitrogen alloying stainless steel is more resistant to hydrogen embrittlement than AlSl type 321 with nitrogen alloying steel, whereas AlSl type 347 with nitrogen alloying steel is susceptible to hydrogen embrittlement. Nitrogen alloying of stainless steel increased the mechanical properties in hydrogen environments by increasing the stability of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Holzworth,Corrosion 26 (1969) 107.

    Google Scholar 

  2. M. B. Whiteman andA. R. Troiano,ibid. 21 (1965) 53.

    Google Scholar 

  3. M. R. Louthan Jr, G. R. Caskey Jr,J. A. Donovan andD. E. Rawl Jr,Mater. Sci. Engng 10 (1972) 357.

    Google Scholar 

  4. M. R. Louthan Jr, in “Hydrogen in Metals”, edited by I. M. Bernstein and A. W. Thompson (American Society for Metals, Metals Park, Ohio, 1974) p. 53.

    Google Scholar 

  5. A. W. Thompson,ibid.“, p. 91.

    Google Scholar 

  6. A. J. West andM. R. Louthan Jr,Met. Trans. 13A (1982) 2049.

    Google Scholar 

  7. A. W. Thompson, in “Environmental Degradation of Engineering Materials”, edited by M. R. Louthan Jr, and R. P. McNitt (Printing Department, Virginia Polytechnic Institute, Blacksburg, Virginia, 1977) p. 3.

    Google Scholar 

  8. A. W. Thompson andJ. A. Brooks,Metall. Trans. A6 (1975) 1931.

    Google Scholar 

  9. C. L. Briant, in “Proceedings of the International Conference on Hydrogen Effects in Metals”, Moran, 1980, edited by I. M. Bernstein and A. W. Thompson (Metallurgical Society of AIME, Warrendale, Pennsylvania 1980) p. 527.

    Google Scholar 

  10. H. Hanninen, T. Hakkarainen andP. Nenonen,ibid.“, p. 575.

    Google Scholar 

  11. P. Rozenak andD. Eliezer,Mater. Sci. Engng 61 (1983) 31.

    Google Scholar 

  12. C. Hwang andI. M. Bernstein,Acta Metall. 34 (1986) 1001.

    Google Scholar 

  13. M. L. Holzworth andH. R. Louthan Jr,Corrosion 24 (1968) 110.

    Google Scholar 

  14. R. Liu, N. Narita, C. Altstetter, H. Birnbaum andN. Pugh,Metal. Trans. 11A (1980) 1563.

    Google Scholar 

  15. W. Y. Chu, J. Yao andC. M. Hsiao,ibid. 15A (1984) 729.

    Google Scholar 

  16. D. Eliezer, G. Chakrapani, C. J. Altstetter andE. Pugh,ibid. 10A (1979) 935.

    Google Scholar 

  17. C. L. Briant,ibid. 10A (1979) 181.

    Google Scholar 

  18. A. W. Thompson,Mater. Sci. Engng 14 (1974) 253.

    Google Scholar 

  19. R. M. Vennet andG. S. Ansell,Trans. ASM 60 (1967) 242.

    Google Scholar 

  20. Y. Rosental, M. Marc-Markowitch andA. Stern,Scripta Metall. 15 (1989) 861.

    Google Scholar 

  21. H. L. G. Byrnes, M. Grujicic andW. S. Owen,Acta Metall. 35 (1987) 1853.

    Google Scholar 

  22. C. G. Rhodes andA. W. Thompson,Metal. Trans. 89A (1977) 1901.

    Google Scholar 

  23. P. Q. Swann,Corrosion 19 (1963) 102.

    Google Scholar 

  24. G. H. Eichelman andF. C. Hull,Trans. ASM 45 (1953) 77.

    Google Scholar 

  25. F. B. Pickering, in “Optimization of Processing, Properties and Service Performance through Microstructural Control”, edited by H. Abrams, G. N. Maniar, D. A. Nail and H. D. Solomon (American Society for Testing and Materials, Philadelphia, 1979) p. 263.

    Google Scholar 

  26. T. Angel,J. Iron Steel Inst. 177 (1954) 165.

    Google Scholar 

  27. ASTM Standard E-112, (American Institute for Testing and Materials, Philadelphia, Pennsylvania, 1977).

  28. ASTM Standard E-8,ibid. (1976).

  29. K. J. Irvine, T. Gladman andF. B. Pickering,J. Iron Steel Inst. 207 (1969) 1017.

    Google Scholar 

  30. K. J. Irvine, D. T. Leewellyn andF. B. Pickering,ibid. 199 (1961) 153.

    Google Scholar 

  31. A. Atrens, J. Bellima, N. Fiore andR. Coye, in “The Metal Science of Stainless Steel”, edited by E. Collings and H. Kings (American Institute of Mechanical Engineers, New York, 1979) p. 54.

    Google Scholar 

  32. P. Studebaker, C. Alstetter andW. Conley, in “Effects in Metals”, edited by I. M. Bernstein and A. W. Thompson (American Institute of Mechanical Engineers, Warrendale, Pennsylvania, 1981) p. 169.

    Google Scholar 

  33. B. Ladna andH. K. Birnbaum,Acta Metall. 35 (1987) 1775.

    Google Scholar 

  34. P. Rozenak, L. Zevin andD. Eliezer,J. Mater. Sci. Lett. 2 (1983) 63.

    Google Scholar 

  35. P. Rozenak andD. Eliezer,Acta Metall. 35 (1987) 2329.

    Google Scholar 

  36. A. W. Thompson,Metall. Trans. 10A (1979) 731.

    Google Scholar 

  37. H. Mathias, Y. Katz andS. Nadiv,Metal Sci. 12 (1978) 129.

    Google Scholar 

  38. P. Rozenak, I. M. Robertson andH. K. Birnbaum,Acta Metall., in press.

  39. R. B. Benson, R. K. Dann andL. W. Roberts Jr,Trans. Met. Soc. AIME 242 (1968) 2199.

    Google Scholar 

  40. C. L. Briant,Scripta Metall. 12 (1978) 541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozenak, P. Effects of nitrogen on hydrogen embrittlement in AlSl type 316, 321 and 347 austenitic stainless steels. J Mater Sci 25, 2532–2538 (1990). https://doi.org/10.1007/BF00638055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00638055

Keywords

Navigation