Journal of Materials Science

, Volume 25, Issue 5, pp 2493–2497 | Cite as

Control of electrical conductivity with the admixture of chlorine in copper tellurite glasses

  • M. Suleman Malik
  • C. A. Hogarth


Copper tellurite glasses containing. CuCI2 with composition 65TeO2-(35−x)CuO-xCuCl2 (mol%) with x=0, 1, 2, 3, 4, 5 were prepared by quenching the melt. An increase in density with the addition of CuCl2 and with a corresponding decrease in molar volume, has been observed. The d.c. conductivity of copper tellurite glasses is found to be very sensitive to the reduced valency rationC=[Cu+]/[Cutotal] and depends on the relative concentrations of Cu+ (reduced valency state) and Cu2+ (higher valency state) ions. It is found that by adding cupric chloride to the melt when the glass is formed, the chlorine in the salt which acts as an oxidizing agent alters the ratio of the concentrations of Cu+ and Cu2+ ions in the glass and hence the conductivity. It is found that more than 2 mol% of cupric chloride reduces the conductivity very sharply due to the formation of chlorine clusters in the form of local TeCl2+ whereas less than 2 mol% of CuCl2 leads to an increase in conductivity due to the Cu+→Cu2+ transition which is negligibly affected by the chlorine due to the formation of TeCl2 which is amorphous in nature. The increase and decrease of electrical conductivity of glasses containing less or more than 2 mol% CuCl2 is also interpreted in terms of the electronic transitions between the orbitals of tellurium 3d electrons, their binding energies and peak widths on the basis of XPS (X-ray Photoelectron Spectroscopy) study, and it was found that the increase in bandwidth supports the idea of clustering of chlorine above 2 mol% CuCl2 and causing a decrease in the conductivity. Overall the conductivity is found to be somewhat uncontrollable in these glasses because it is not simply dependent on the concentration of Cu2+ ions.


Polymer Copper Electrical Conductivity Chlorine Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. L. Tap andJ. M. Stevels,Phys. Chem. Glass 4 (1963) 193.Google Scholar
  2. 2.
    B. V. Janakirama Rao,J. Amer. Ceram. Soc. 48 (1965) 311.Google Scholar
  3. 3.
    J. Hansen,J. Electrochem. Soc. 112 (1965) 994.Google Scholar
  4. 4.
    V. A. Ioffe, I. B. Patrina andI. S. Poberovska,Sov. Phys. Solid State 2 (1962) 609.Google Scholar
  5. 5.
    N. F. Mott,J. Non-Cryst. Solids 1 (1968) 1.Google Scholar
  6. 6.
    G. S. Linsley, A. E. Owen andF. M. Hayatee,J. Non-Cryst. Solids 4 (1970) 208.Google Scholar
  7. 7.
    G. R. Moridi andC. A. Hogarth,Int. J. Electronics 37 (1977) 141.Google Scholar
  8. 8.
    E. J. Verwey, P. W. Haaijman, F. C. Romeijn andG. W. van Oosterhout,Philips Res. Rep. 5 (1950) 173.Google Scholar
  9. 9.
    L. Murawski, C. H. Chung andJ. D. Mackenzie,J. Non-Cryst. Solids 32 (1979) 91.Google Scholar
  10. 10.
    C. F. Drake, I. F. Scanlan andA. Engel,Phys. Status Solidi 32 (1969) 193.Google Scholar
  11. 11.
    C. A. Hogarth andG. R. Moridi,Int. J. Electron. 54 (1983) 169.Google Scholar
  12. 12.
    C. A. Hogarth andA. I. Popov,ibid. 54 (1983) 171.Google Scholar
  13. 13.
    A. A. Kutub, M. N. Khan, E. E. Khawaja andC. A. Hogarth,J. Mater. Sci. 19 (1984) 1563.Google Scholar
  14. 14.
    G. R. Moridi andC. A. Hogarth, in Proceedings International Conference Amorphous and Liquid Semiconductors, Edinburgh September 1977, edited by W. E. Spee (Centre for Industrial Consultancy and Liasison, Edinburgh University 1977) p. 688.Google Scholar
  15. 15.
    A. A. Novikov andC. A. Hogarth,Int. J. Electron. 54 (1983) 191.Google Scholar
  16. 16.
    A. E. Mohammad Osman, PhD Thesis, Brunel University, Uxbridge, UK (1987).Google Scholar
  17. 17.
    C. A. Hogarth andM. N. Khan,Int. J. Electron. 39 (1975) 589.Google Scholar
  18. 18.
    M. A. Hassan andC. A. Hogarth,J. Mater. Sci. 23 (1988) 2500.Google Scholar
  19. 19.
    M. Suleman Malik, C. A. Hogarth andK. A. K. Lott,J. Mater. Sci. Lett. 25 (1990) 1913.Google Scholar
  20. 20.
    R. C. West, “CRC Handbook of Chemistry and Physics” 59th Edn (CRC Press, Inc, Boca Raton, Florida, 1978/9) p. B172.Google Scholar
  21. 21.
    M. A. Hassan, PhD Thesis Brunel University, Uxbridge, UK (1988).Google Scholar
  22. 22.
    M. M. El-Zaidia, A. A. Ammar andR. A. Elmallawany,Phys. Status Solidi (a) 91 (1985) 637.Google Scholar
  23. 23.
    D. L. Kinser andL. K. Wilson in “Recent Advances in Science and Technology of the Materials”, edited by A. Bishay (Plenum Press, New York, 1974) p. 77.Google Scholar
  24. 24.
    L. D. Bogomolova, T. F. Dolgolenko, V. N. Lazukin andI. V. Filatova,Sov. Phys. Sol. State 16 (1974) 954.Google Scholar
  25. 25.
    W. C. Cooper; in “Tellurium” (Naranda Research Centre, Point Claire, Quebec, 1971) p. 137.Google Scholar
  26. 26.
    P. A. Cox, “The Electronic Structure and Chemistry of Solids” (Oxford University Press, Oxford, 1987) p. 26.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • M. Suleman Malik
    • 1
  • C. A. Hogarth
    • 1
  1. 1.Department of PhysicsBrunel UniversityUxbridgeUK

Personalised recommendations