Astrophysics and Space Science

, Volume 245, Issue 1, pp 97–116 | Cite as

Motion of test particles in parabolic density distributions

  • P. S. Negi
  • M. C. Durgapal


A detailed study of the motion of test-particles [either having a nonzero rest-mass or zero rest-mass] has been carried out for Tolman's type VII solution with vanishing surface density, which is one of the few physically relevant exact solutions of Einstein's field equations for static and spherically symmetric mass distributions.

The trapping angles, ψ0, at which the test-particles escape these configurations are calculated and the trajectories of test-particles are studied in detail. The types of trajectories found for this spacetime geometry are: (1) arc-like trajectories, (2) spiral-like trajectories ending into a circle of constant radius, (3) trajectories with a cusp at the minimum distance, (4) double-bounded trajectories, and (5) double-bounded trajectories with a cusp at the minimum distance. The test-particles following the trajectories of type (1) and type (3) escape the configuration while others are trapped within the structure. Besides the advancement of periastron of the orbits the retrogradation of periastrons are also observed.

The stability of the structures is considered by using the variational method (Chandrasekhar, 1964a,b), and its is seen that the structures remain stable at least for a central redshift,z0, as large as 5.09.

These studies may distinguish relativistic cluster from a Newtonian one and may find application to the local models of quasi-stellar objects (QSOs).


Minimum Distance Mass Distribution Field Equation Local Model Test Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R., Bazin, M. and Schiffer, M.: 1975,Introduction to General Relativity, McGraw-Hill, New York; Kogakusha, Tokyo, Ltd., p. 213.Google Scholar
  2. Bisnovatyi-Kogan, G.S., Merafina, M., Ruffini, R. and Vesperini, E.: 1993,Astrophys. J. 414, 187.Google Scholar
  3. Bondi, H.: 1964,Proc. Roy. Soc. A282, 303.Google Scholar
  4. Burstein, D. and Rubin, V.C.: 1985,Astrophys. J. 297, 423.Google Scholar
  5. Chandrasekhar, S.: 1964a,Phys. Rev. Letters 12, 114 and 437.Google Scholar
  6. Chandrasekhar, S.: 1964b,Astrophys. J. 140, 417.Google Scholar
  7. Chandrasekhar, S.: 1983a,The Mathematical Theory of Black Holes, Clarendon, Oxford, p. 96.Google Scholar
  8. Chandrasekhar, S.: 1983b,The Mathematical Theory of Black Holes, Clarendon, Oxford, p. 127.Google Scholar
  9. Durgapal, M.C. and Pande, A.K.: 1979,Indian J. Pure Appl. Phys. 17, 313.Google Scholar
  10. Durgapal, M.C. and Rawat, P.S.: 1980,Mon. Not. R. Astron. Soc. 192, 659.Google Scholar
  11. Fackerell, E.D.: 1970,Astrophys. J. 160, 859.Google Scholar
  12. Goldstein, H.: 1970,Classical Mechanics, Indian Book Co., New Delhi, p. 66.Google Scholar
  13. Hoyle, F. and Fowler, W. A.: 1967,Nature 213, 373.Google Scholar
  14. Ipser, J.R.: 1969,Astrophys. J. 158, 17.Google Scholar
  15. Mehra, A.L.: 1966,J. Aust. Math. Soc. 6, 153.Google Scholar
  16. Merafina, M. and Ruffini, R.: 1990,Astron. Astrophys. 227, 415.Google Scholar
  17. Misner, C.W. and Zapolsky, H.S.: 1964,Phys. Rev. Letters 12, 635.Google Scholar
  18. Negi, P.S., Pande, A.K. and Durgapal, M.C.: 1990,Astrophys. Space Sci. 166, 1.Google Scholar
  19. Negi, P.S., Pandey, K. and Pande, A.K.: 1991,Astrophys. Space Sci. 176, 131.Google Scholar
  20. Negi, P.S., Pande, A.K. and Durgapal, M.C.: 1993,Astrophys. J. 406, 1.Google Scholar
  21. Pande, A.K. and Durgapal, M.C.: 1986,Class. Quantum Grav. 3, 547.Google Scholar
  22. Rubin, V.C.: 1986, in: S.L. Shapiro and S.A. Teukolsky (eds.),Highlights of Modern Astrophysics: Concepts and Controvercies, Wiley, New York, 269.Google Scholar
  23. Shapiro, S.L. and Teukolsky, S.A.: 1985a,Astrophys. J. 298, 58.Google Scholar
  24. Shapiro, S.L. and Teukolsky, S.A.: 1985b,Astrophys. J. 292, L41.Google Scholar
  25. Suffern, K.G. and Fackerell, E.D.: 1976,Astrophys. J. 203, 477.Google Scholar
  26. Synge, J.L.: 1966,Mon. Not. R. Astron. Soc. 131, 463.Google Scholar
  27. Tolman, R.C.: 1939,Phys. Rev. 55, 364.Google Scholar
  28. Zeldovich, Ya. B. and Novikov, I.D.: 1978a,Relativistic Astrophysics Vol. 1, Chicago University Press, Chicago, Midway Reprint, p. 431.Google Scholar
  29. Zeldovich, Ya.B. and Novikov, I.D.: 1978b,Relativistic Astrophysics Vol. 1, Chicago University Press, Chicago, p. 105.Google Scholar
  30. Zeldovich, Ya.B. and Podurets, M.A.: 1965,Astron. Zh. 42, 963 (English translation in Soviet Astron. —Astron. J. 9, 742).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • P. S. Negi
    • 1
  • M. C. Durgapal
    • 1
  1. 1.Department of PhysicsKumaun UniversityNainitalIndia

Personalised recommendations