Astrophysics and Space Science

, Volume 183, Issue 2, pp 199–213 | Cite as

Periodic solutions and their stability for the problem of gyrostat

  • F. M. El-Sabaa


The Hamiltonian function of the problem of gyrostat is written in terms of Deprit's transform. The periodic solutions, using Lie's transform, are given and the condition for their stability is carried out.


Periodic Solution Hamiltonian Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkanjeleski, Y.: 1977,Lectures on the Dynamics of a Rigid Body, Moscow.Google Scholar
  2. Deprit, A.: 1967,Amer. J. Phys. 53, 1, 424.Google Scholar
  3. Euler, L.: 1785,Découverte d'une nouveau principe de méchanique, Mémoires de l'Acad. des Sci. de Berlin, Vol. 14, pp. 154–193.Google Scholar
  4. Hori, G.: 1966,Publ. Astron. Soc. Japan 18(4), 287.Google Scholar
  5. Lagrange, J.: 1888,Mécanique analytique, Gauthier-Villars, Paris.Google Scholar
  6. Levi-Civitá, T. and Amaldi, U.: 1927,Lezioni di Meccanica Razionale, Vol. II, Bologna.Google Scholar
  7. Markov, A. and Churkina, N.: 1985,Astron. Letters 11(8), 267.Google Scholar
  8. Poincaré, H.: 1892–1899,Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (reprinted by Dover, New York, 1957).Google Scholar
  9. Poincaré, H.: 1905,Leçons de mécanique céleste, Vol. 1, Gauthier-Villars, Paris.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • F. M. El-Sabaa
    • 1
  1. 1.Kuwait UniversityKuwait

Personalised recommendations