Advertisement

European Journal of Clinical Pharmacology

, Volume 35, Issue 6, pp 579–583 | Cite as

Simvastatin and bezafibrate: Effects on serum lipoproteins and lecithin: Cholesterol acyltransferase activity in familial hypercholesterolaemia

  • P. Weisweiler
Originals

Summary

Sixteen subjects with familial hypercholesterolaemia were randomly assigned to treatment with simvastatin 20–40 mg/day (an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase) or with bezafibrate 600 mg/day (a clofibrate analogue) for 12 weeks.

Both drugs produced significant reductions in serum and LDL cholesterol; mean percentage fall −30.5% and −38.1% (simvastatin) and −17.8% and −20.6% (bezafibrate), respectively. Both drugs also caused a decrease in VLDL cholesterol, while only bezafibrate decreased the serum and VLDL triglyceride levels and increased HDL cholesterol and serum apolipoprotein A-I and A-II levels. Serum apolipoprotein B fell by 33.3% (simvastatin) and 15.7% (bezafibrate). Simvastatin and bezafibrate produced significant increases in the mean fractional esterification rate of LCAT, by +124,1% and +20.6%, respectively.

Thus simvastatin was clearly more effective than bezafibrate in lowering LDL by enhancing its turnover, but bezafibrate had specific effects on VLDL and HDL that might be favourable in combined treatment regimens.

Key words

simvastatin bezafibrate hypercholesterolaemia LCAT lipoproteins serum cholesterol serum triglycerides side-effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slack J (1969) Risk of ischaemic heart disease in familial hyperlipoproteinaemic states. Lancet 2: 1380–1382Google Scholar
  2. 2.
    Consensus Conference (1985) Lowering blood cholesterol to prevent heart disease. J Am Med Assoc 253: 2080–2086Google Scholar
  3. 3.
    Goldstein JL, Brown MS (1983) Familial hypercholesterolaemia. In: Stanbury JB, Wijngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, Mc Graw-Hill, New York, pp 672–712Google Scholar
  4. 4.
    Levy RI (1983) Hyperlipoproteinaemia: Dietary and pharmacologic intervention. Am J Med 74: 1–27Google Scholar
  5. 5.
    Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Lisch J, Springer J (1980) Mevinolin, a highly potent competitive inhibitor of hydroxymethylglutarylcoenzyme A reductase and a cholesterollowering agent. Proc Natl. Acad Sci USA 77: 3957–3961Google Scholar
  6. 6.
    The Lovastatin Study Group II (1986) Therapeutic response to lovastatin (mevinolin) in nonfamilial hypercholesterolaemia. A multicenter study. J Am Med Assoc 256: 2829–2834Google Scholar
  7. 7.
    Mol MJTM, Erkelens DW, Gevers Leuven JA, Schouten JA, Stalenhoef AFH (1986) Effects of synvinolin (MK-733) on plasma lipids in familial hypercholesterolaemia. Lancet 2: 936–939Google Scholar
  8. 8.
    Brunzell JD, Sniderman AD, Albers JJ, Kwiterovich PO (1984) Apoproteins B and A-I and coronary artery disease in humans. Arteriosclerosis 4: 79–83Google Scholar
  9. 9.
    Glomset JA, Norum KR (1973) The metabolic role of lecithin: cholesterol acyltransferase: Perspectives from pathology. Adv Lipid Res 11: 1–65Google Scholar
  10. 10.
    Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–1353Google Scholar
  11. 11.
    Warnick GR, Nguyen T, Albers AA (1985) Comparison of improved precipitation methods for quantification of high density lipoprotein cholesterol. Clin Chem 31: 217–222Google Scholar
  12. 12.
    Weisweiler P, Schwandt P, Friedl C (1984) Determination of human apolipoproteins A-I, B, and E by laser nephelometry. J Clin Chem Clin Biochem 22: 113–118Google Scholar
  13. 13.
    Weisweiler P (1981) Quantitation of human apolipoprotein A-II by electroimmunoassay. J Clin Chem Clin Biochem 19: 872Google Scholar
  14. 14.
    Nagasaki T, Akanuma G (1977) A new colorimetric method for the determination of plasma lecithin: Cholesterol acyltransferase activity. Clin Chim Acta 75: 371–375Google Scholar
  15. 15.
    Wissenschaftliche Tabellen Geigy (1980) Teilband Statistik (8. Aufl.). CIBA-GEIGY, BaselGoogle Scholar
  16. 16.
    Olsson AG, Rössner ST, Walldius G, Carlson LA, Lang DP (1977) Effect of BM 15075 on lipoprotein concentrations in different types of hyperlipoproteinaemia. Atherosclerosis 27: 279–288Google Scholar
  17. 17.
    Gavish D, Oschry Y, Fainaru M, Eisenberg S (1986) Change in very low, low and high density lipoproteins during lipid lowering (bezafibrate) therapy: Studies in type IIa and type IIb hyperlipoproteinaemia. Eur J Clin Invest 16: 61–68Google Scholar
  18. 18.
    Schulzeck P, Bojanowski M, Jochim A, Canzler H, Bojanovski D (1988) Comparison between simvastatin and bezafibrate in effect on plasma lipoproteins and apolipoproteins in primary hypercholesterolaemia. Lancet 1: 611–613Google Scholar
  19. 19.
    Brown MS, Goldstein JL (1980) Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 21: 505–517Google Scholar
  20. 20.
    Bilheimer DW, Grundy SM, Brown MS, Goldstein JL (1983) Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolaemia. Proc Natl Sci USA 80: 4124–4128Google Scholar
  21. 21.
    Langer T, Strober W, Levy RI (1972) The metabolism of low density lipoprotein in familial type II hyperlipoproteinaemia. J Clin Invest 51: 1528–1536Google Scholar
  22. 22.
    Smith FR, Dell RB, Noble RP, Goodman DS (1976) Parameters of the three pool model of the turnover of plasma cholesterol in normal and hyperlipidaemic humans. J Clin Invest 57: 137–148Google Scholar
  23. 23.
    Clifton-Bligh P, Miller NE, Nestel PJ (1974) Increased plasma cholesterol esterifying activity during colestipol resin therapy in man. Metabolism 23: 437–444Google Scholar
  24. 24.
    Wallentin L (1978) Lecithin: Cholesterol acyl transfer rate and high density lipoproteins in plasma during dietary and cholestryramine treatment of type IIa hyperlipoproteinaemia. Eur J Clin Invest 8: 383–389Google Scholar
  25. 25.
    Grundy SM, Ahrens EH, Salen G (1971) Interruption of the enterohepatic circulation of bile acids in man: Comparative effects of cholestryramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med 78: 94–121Google Scholar
  26. 26.
    Stewart JM, Packard CJ, Lorimer AR, Boag DE, Shepherd J (1982) Effects of bezafibrate on receptor-mediated and receptor-independent low density lipoprotein catabolism in type II hyperlipoproteinaemic subjects. Atherosclerosis 44: 355–365Google Scholar
  27. 27.
    Berndt J, Gaumert R, Still J (1978) Mode of action of the lipid lowering agents, clofibrate and BM 15.075, on cholesterol biosynthesis in rat liver. Atherosclerosis 30: 147–151Google Scholar
  28. 28.
    Eisenberg S, Gavish D, Oschry Y, Fainaru M, Deckelbaum RJ (1984) Abnormalities in very low, low and high density lipoproteins in hypertrigylceridaemia. Reversal toward normal with bezafibrate treatment. J Clin Invest 74: 470–482Google Scholar
  29. 29.
    Shepherd J, Caslake MJ, Lorimer AR, Vallance BD, Packard CJ (1985) Fenofibrate reduces low density lipoprotein catabolism in hypertriglyceridaemic subjects. Arteriosclerosis 5: 162–168Google Scholar
  30. 30.
    Fidge V, Nestel P, Ishikawa T, Reardon M, Billington T (1980) Turnover of apoproteins A-I and A-II of high density lipoprotein and the relationship to other lipoproteins in normal and hyperlipidaemic individuals. Metabolism 29: 643–653Google Scholar
  31. 31.
    Weisweiler P, Schwandt P (1986) Colestipol plus fenofibrate versus synvinolin in familial hypercholesterolaemia. Lancet 2: 1212–1213Google Scholar
  32. 32.
    Weisweiler P (1988) Low-dose colestipol plus fenofibrate: effects on plasma lipoproteins, lecithin: Cholesterol acyltransferase and postheparin lipases in familial hypercholesterolaemia. Metabolism (in press)Google Scholar
  33. 33.
    Vega GL, Grundy SM (1987) Treatment of primary moderate hypercholesterolaemia with lovastatin (mevinolin) and colestipol. J Am Med Assoc 257: 33–38Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. Weisweiler
    • 1
  1. 1.MRM — Metabolic Research MunichMunichGermany

Personalised recommendations