Astrophysics and Space Science

, Volume 158, Issue 1, pp 107–115 | Cite as

Effects of ions and finite electron density on quasi-electrostatic whistler-mode propagation

  • S. S. Sazhin


An approximate expression is derived for the maximum deviation of the direction of the quasi-electrostatic whistler-mode group velocity from the external magnetic field. This derivation takes into account finite electron density, temperature, and ion effects. It is pointed out that ions cannot be neglected at low frequencies ω. For ω close to half the electron gyrofrequency the contribution of these effects is about 10% for parameters typical for the inner magnetosphere and should be taken into account in an accurate analysis of whistler mode propagation.


Magnetic Field External Magnetic Field Maximum Deviation Group Velocity Mode Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gurnett, D. A. and Inan, U. S.: 1988,Rev. Geophys. 26, 285.Google Scholar
  2. Hashimoto, K., Kimura, I., and Kumagai, H.: 1977,Planetary Space Sci. 25, 871.Google Scholar
  3. Hayakawa, M.: 1988,Proc. of the NIPR Symp. on Upp. Atm. Phys., No. 1, p. 168.Google Scholar
  4. Mosier, S. R. and Gurnett, D. A.: 1969,J. Geophys. Res. 74, 5675.Google Scholar
  5. Mosier, S. R. and Gurnett, D. A.: 1971,J. Geophys. Res. 76, 972.Google Scholar
  6. Muto, H., Hayakawa, M., Parrot, M., and Lefèvre, F.: 1987,J. Geophys. Res. 92, 7538.Google Scholar
  7. Ohmi, N. and Hayakawa, M.: 1986,J. Plasma Phys. 36, 379.Google Scholar
  8. Sazhin, S. S.: 1986,Planetary Space Sci 34, 497.Google Scholar
  9. Sazhin, S. S.: 1988a,Planetary Space Sci. 36, 123.Google Scholar
  10. Sazhin, S. S.: 1988b,Ann. Geophys. 6, 177.Google Scholar
  11. Sazhin, S. S.: 1988c,Planetary Space Sci. 36, 1111.Google Scholar
  12. Sazhin, S. S. and Sazhina, E. M.: 1985,Planetary Space Sci. 33, 295.Google Scholar
  13. Tokar, R. L. and Gary, S. P.: 1985,Phys. Fluids 28, 1065.Google Scholar
  14. Tsurutani, B. T., Smith, E. J., Anderson, R. R., Ogilvie, K. W., Scudder, J. D., Baker, D. N., and Bame, S. J.: 1982,J. Geophys. Res. 87, 6060.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • S. S. Sazhin
    • 1
  1. 1.Department of PhysicsUniversity of SheffieldSheffieldUK

Personalised recommendations