Astrophysics and Space Science

, Volume 157, Issue 1–2, pp 131–141 | Cite as

Population synthesis in starburst galaxies: Mkn 710

  • J. M. Mas-Hesse
  • P. Arnault
  • D. Kunth
Population Synthesis


Evolutionary population synthesis models have been built to study the properties of the starforming processes taking place in starburst regions. BothZ andZ/10 stellar evolutionary tracks have been used to take into account that starburst galaxies are generally metal deficient. A very small time step allows us to follow the evolution of the cluster even during very short phases. Three parameters have been synthesized: the ratio of the Siiv (1400 Å) andCiv (1550 Å) UV absorption lines, that characterize the predominant massive stars in the cluster, the ratio of the WRbump over the Hβ luminosity, tracer of WR stars and the FIR luminosity, directly related to the extinction due to dust in the cluster. The predictions have been compared with observations of the burst taking place in the galaxy Mkn 710. The burst age is 5–6 Myr. The stars seem to have formed simultaneously with a mass spectrum whose slope is in the range (1,2) for massive stars. The upper mass limit has to be ≥60M. We have performed a systematic study of a sample of 17 starburst galaxies searching for differences in the star formation process that may be related to different metallicities or morphological types.


Dust Star Formation Massive Star Mass Limit Small Time Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnault, P., Kunth, D., and Schild, H.: 1989,Astron. Astrophys. (submitted).Google Scholar
  2. Azzopardi, M., Lequeux, J., and Maeder, A.: 1988,Astron. Astrophys. 189, 34.Google Scholar
  3. Çataloged Galaxies and QSO's Observed in the IRAS Survey, JPL, 1985.Google Scholar
  4. Heck, A., Egret, D., Jaschek, M., and Jaschek, C.: 1984,ESA SP-1052.Google Scholar
  5. Kunth, D. and Schild, H.: 1986,Astron. Astrophys. 169 71.Google Scholar
  6. Kurucz, R. L.: 1979,Astrophys. J. Suppl. Ser. 80, 35.Google Scholar
  7. Lequeux, J., Maucherat-Joubert, M., Deharveng, J. M., and Kunth, D.: 1981,Astron. Astrophys. 103, 305.Google Scholar
  8. Maeder, A.: 1982,Astron. Astrophys. 105, 149.Google Scholar
  9. Maeder, A. and Meynet, G.: 1987,Astron. Astrophys. 182, 243.Google Scholar
  10. Mas-Hesse, J. M., Arnault, P., and Kunth, D.: 1989, (in prep.).Google Scholar
  11. Massey, P., Conti, P., and Armandroff, T.: 1987,Astron. J. 94, 1538.Google Scholar
  12. Mihalas, D.: 1972, NCAR Technical Note STR-76.Google Scholar
  13. Panagia, N.: 1978, in G. Setti and G. G. Fazio (eds.)Infrared Astronomy, D. Reidel Publ. Co., Dordrecht, Holland, pp. 115–136.Google Scholar
  14. Searle, L., Sargent, W. L. W., and Bagnuolo, W. G.: 1973,Astrophys. J. 179, 427.Google Scholar
  15. Sekiguchi, K. and Anderson, K. S.: 1987,Astron. J. 94, 129.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. M. Mas-Hesse
    • 1
  • P. Arnault
    • 2
  • D. Kunth
    • 2
  1. 1.Departamento de AstrofisicaUniversidad Complutense de MadridSpain
  2. 2.Institut d'Astrophysique de ParisFrance

Personalised recommendations