Skip to main content
Log in

The physics of stellar core collapse

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The hydrodynamics that develops during the infall of the core of a massive star at the end of its hydrostatic evolutionary epoch can have a profound effect on its subsequent dynamical history. In this paper the important processes governing the infall hydrodynamics are explored both semi-analytically and numerically with the aim of explaining the results of large-scale numerical calculations. We focus in particular on the factors responsible for reducing the mass of the inner core. These factors are found to be mainly associated with general relativistic effects and with the production, equilibration, and transport ofv e 's. Semi-leptonicv e emission and absorption are responsible for virtually all of thev e production. They dominate the energy transfer rate between matter andv e 's, but, with the rates being skewed to high energy, they are an importantv e -matter equilibrator only for the high-energy tail of thev e distribution. Neutrinoelectron scattering (NES) plays the dominant role inv e -matter equilibration with the important result that the equilibration is nearly complete by trapping. A careful examination of conditions where the onset of neutrino trapping is occurring indicates that the trapping density is a function of the enclosed mass, increasing with decreasing distance from the core center, and increasing with the extent of thev e -matter equilibration. Though not the dominant contributor to thev e -matter energy transfer rate, NES dominates the matter entropy production rate with another important result that the electron capture rate on free protons is significantly increased before trapping. The result of all of this is a greatly reduced inner core mass by the time of core turn-around. For numerical calculations employing the LLPR equation of state (or something similar), and for precollapse models having iron cores as small as 1.35M (the smallest used by the author), this reduction of the inner core mass leads to the generation of a weak shock which fails to eject mass in a promptffashion. The effect of the small inner core mass on the subsequent dynamical history of the core is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnett, W. D.: 1983,Astrophys. J. 263, L55.

    Google Scholar 

  • Baron, E., Cooperstein, J., and Kahana, S.: 1985,Phys. Rev. Letters 55, 126.

    Google Scholar 

  • Bethe, H. A. and Wilson, J. R.: 1985,Astrophys. J. 295, 14.

    Google Scholar 

  • Bludman, S. A., Lichtenstadt, I., and Hayden, G.: 1982,Astrophys. J. 261, 661.

    Google Scholar 

  • Bowers, R. and Wilson, J. R.: 1982a,Astrophys. J. Suppl. 50, 115.

    Google Scholar 

  • Bowers, R. and Wilson, J. R.: 1982b,Astrophys. J. 263, 366.

    Google Scholar 

  • Brown, G. E.: 1982, in M. J. Rees and R. J. Stoneham (eds.),Supernovae: A Survey of Current Research, D. Reidel Publ. Co., Dordrecht, Holland, p. 13.

    Google Scholar 

  • Brown, G. E., Bethe, H. A., and Baym, G.: 1982,Nucl. Phys. A375, 481.

    Google Scholar 

  • Bruenn, S. W.: 1985,Astrophys. J. Suppl. 58, 771.

    Google Scholar 

  • Bruenn, S. W.: 1986a,Astrophys. J. Suppl. 62, 331.

    Google Scholar 

  • Bruenn, S. W.: 1986b,Astrophys. J. 311, L69.

    Google Scholar 

  • Burrows, A. and Lattimer, J. M.: 1983,Astrophys. J. 270, 735.

    Google Scholar 

  • Chandrasekhar, S.: 1985,An Introduction to Stellar Structure, Dover, Reprint, New York.

    Google Scholar 

  • Colgate, S. A. and Johnson, H.: 1960,Phys. Rev. Letters 5, 573.

    Google Scholar 

  • Cooperstein, J.: 1984, in D. Bancel and M. Signore (eds.),Problems of Collapse and Numerical Relativity, D. Reidel Publ. Co., Dordrecht, Holland, p. 133.

    Google Scholar 

  • Cooperstein, J. and Wambach, J.: 1984,Nucl. Phys. A420, 591.

    Google Scholar 

  • Friedman, B. and Pandharipande, V. R.: 1981,Nucl. Phys. A361, 502.

    Google Scholar 

  • Goldreich, P. and Weber, S. V.: 1980,Astrophys. J. 238, 991.

    Google Scholar 

  • Hillebrandt, W.: 1982, in M. J. Rees and R. J. Stoneham (eds.),Supernovae: A Survey of Current Research, D. Reidel Publ. Co., Dordrecht, Holland, p. 123.

    Google Scholar 

  • Lamb, D. Q., Lattimer, J. M., Pethick, C., and Ravenhall, D. G.: 1978,Phys. Rev. Letters 41, 1623.

    Google Scholar 

  • Lamb, D. Q., Lattimer, J. M., Pethick, C., and Ravenhall, D. G.: 1981,Nucl. Phys. A 360, 459.

    Google Scholar 

  • Lamb, D. Q., Lattimer, J. M., Pethick, C., and Ravenhall, D. G.: 1983,Nucl. Phys. A 411, 449.

    Google Scholar 

  • Lattimer, J. M. and Burrows, A.: 1984, in D. Bancel and M. Signore (eds.),Problems of Collapse and Numerical Relativity. D. Reidel Publ. Co., Dordrecht, Holland, p. 147.

    Google Scholar 

  • Lattimer, J. M., Burrows, A., and Yahil, A.: 1985,Astrophys. J. 288, 644.

    Google Scholar 

  • Lattimer, J. M., Pethick, C., Ravenhall, D. G., and Lamb, D. Q.: 1985,Nucl. Phys. A 432, 646 (LLPR).

    Google Scholar 

  • Mayle, R. and Wilson, J. R.: 1986, preprint.

  • Mazurek, T. J.: 1976,Astrophys. J. 207, L87.

    Google Scholar 

  • Mazurek, T. J.: 1982,Astrophys. J. 259, L13.

    Google Scholar 

  • Mazurek, T. J., Cooperstein, J., and Kahana, S.: 1980, in V. J. Stenger (ed.),Dumand-80, University of Hawaii, Honolulu, p. 142.

    Google Scholar 

  • Myra, E. S., Bludman, S. A., Hoffman, V., Lichtenstadt, I., Sack, N., and Van Riper, K. A.: 1986, preprint.

  • Nomoto, K. and Hashimoto, M.: 1986,Prog. Part. Nucl. Phys. 17, 267.

    Google Scholar 

  • Nomoto, K. and Hashimoto, M.: 1987,Phys. Reports (in press).

  • Pethick, C., Ravenhall, D. G., and Lattimer, J. M.: 1984,Nucl. Phys. A 414, 513.

    Google Scholar 

  • Takahara, M. and Sato, K.: 1985,Prog. Theor. Phys. 72, 978.

    Google Scholar 

  • Van Riper, K. A.: 1979,Astrophys. J. 232, 558.

    Google Scholar 

  • Van Riper, K. A.: 1979,Astrophys. J. 257, 793.

    Google Scholar 

  • Van Riper, K. A. and Lattimer, J. M.: 1981,Astrophys. J. 249, 270.

    Google Scholar 

  • Weaver, T. A. and Woosley, S. E.: 1980,Bull. Am. Astron. Soc. 11, 724.

    Google Scholar 

  • Wilson, J. R.: 1985, in J. M. Centrella, J. M. LeBlanc, and R. L. Bowers (eds.),Numerical Astrophysics, Jones and Bartlett, Boston, p. 422.

    Google Scholar 

  • Wilson, J. R., Mayle, R., Woosley, S. E., and Weaver, T. A.: 1987,Ann. N. Y. Acad. Sci. (in press).

  • Woosley, S. E.: 1985, private communication.

  • Woosley, S. E.: 1987, private communication.

  • Woosley, S. E. and Weaver, T. A.: 1985, preprint.

  • Yahil, A.: 1983,Astrophys. J. 265, 1047.

    Google Scholar 

  • Yahil, A. and Lattimer, J. M.: 1982, in M. J. Rees and R. J. Stoneham (eds.),Supernovae: A Survey of Current Research, D. Reidel Publ. Co., Dordrecht, Holland, p. 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by National Science Foundation Grant AST-8408432.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruenn, S.W. The physics of stellar core collapse. Astrophys Space Sci 143, 15–44 (1988). https://doi.org/10.1007/BF00636752

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00636752

Keywords

Navigation