Skip to main content
Log in

Summary

Changes in the main physiological parameters and circulating indicators of carbohydrate, protein, lipid (and ketone body) metabolism were measured in ten exercising subjects before L-carnitine (L-carn) loading, after 4 weeks of daily loading with 2 g L-carn, and 6–8 weeks after terminating L-carn administration. Measurements were made on venous blood samples collected during each experiment at fixed time intervals over an initial rest of 45 min, 60 min bicycle exercise performed near 50%\(\dot V_{{\text{O}}_{{\text{2}} {\text{max}}} } \) and 120 min recovery. Free and total plasma carnitine levels reached a plateau corresponding to an average rise of 25% for both fractions, 9–10 days after the beginning of the L-carn diet. These levels returned to their initial values 6–8 weeks after cessation of the supply. Generally L-carn supplementation did not significantly modify the physiological parameters and circulating metabolites. No distinct increase of the relative participation of endogenous lipids in the fuel supply of prolonged submaximal exercise was observed. In normal human subjects the increased demand for fatty acid oxidation resulting from exercise seems to be adequately supported by endogenous levels of carnitine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askew EW, Dohm GL, Weiser PC, Huston RL, Doub WH (1980) Supplemental dietary carnitine and lipid metabolism in exercising rats. Nutr Metab 24:32–42

    Google Scholar 

  • Banister EW, Allen ME, Mekjavic IB, Singh AK, Legce B, Mutch BJC (1983) The time course of ammonia and lactate accumulation in blood during exercise. Eur J Appl Physiol 51:195–202

    Google Scholar 

  • Carlin JI, Reddan WG, Sanjak M, Hodach R (1986) Carnitine metabolism during prolonged exercise and recovery in humans. J Appl Physiol 61:1275–1278

    Google Scholar 

  • Cederblad G (1984) Fat metabolism following an intravenous bolus dose of a fat emulsion and carnitine. Clin Physiol 4:159–168

    Google Scholar 

  • Décombaz JE, Reffet B, Bloemhard Y (1987) L-carnitine supplementation, caffeine and fuel oxidation in the exercising rat. Nutr Res 7:923–933

    Google Scholar 

  • Eclache JP, Quard S, Carrier H, Berthillier G, Marnot B, Eichenberger D (1979) Effects d'une adjonction de carnitine au régime alimentaire sur l'exercise intense et prolongé. In: Lacour JR (ed) Place de l'alimentation dans la préparation biologique à la compétition. Comptes Rendus du Colloque de Saint Etienne, pp 163–171

  • Eggstein M, Kuhlmann E (1970) Triglyceride und Glyerin. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie Weinheim, pp 1765–1771

  • Fanelli O (1978) Carnitine and acetyl-carnitine, natural substances endowed with interesting pharmacological properties. Life Sci 23:2563–2570

    Google Scholar 

  • Ferrari R, Cucchini F, Visioli O (1984) The metabolic effects of L-carnitine in angina pectoris. Int J Cardiol 5:213–216

    Google Scholar 

  • Freund H, Jacqot P, Marbach J, Pellier A, Ramboarina D, Vogt JJ (1970) In vivo physiological experiments on the autoanalyzer in a computerized environment. In: Advances in automated analysis, vol 1. Mediad Incorporated, White Plains, New York, pp 195–198

    Google Scholar 

  • Fritz IB, McEwen B (1959) Effects of carnitine on fatty acid oxidation by muscle. Science 129:334–335

    Google Scholar 

  • Harrisson MH (1985) Effects of thermal stress and exercise on blood volume in humans. Physiol Rev 65:149–209

    Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in man. Annu Rev Physiol 38:273–291

    Google Scholar 

  • Kuramasi K, Ishiharaa, Uehara H (1972) Determination of ammonia in blood plasma by an ion exchange method. Clin Chim Acta 42:141–146

    Google Scholar 

  • Lebrun P, Guezennec Y, Bonnet P, Muh JP, Aymond M, Morand P (1984) Influence d'une prise de D,L-carnitine par voie orale sur les paramètres physiologiques et biochimiques au cours de deux types d'épreuves d'effort. Intéret chez l'athlète d'endurance. Med Nutr 20:235–240

    Google Scholar 

  • Leibowitz B (1984) Carnitine. The vitamin BT phenomenon. A Dell Book, New York, pp 173

  • Maccari F, Pessotto P, Ramacci MT, Angelucci L (1985) The effect of exogenous L-carnitine on fat diet-induced hyperlipidemia in the rat. Life Sci 36:1967–1975

    Google Scholar 

  • McGarry JD, Foster DW (1976) An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lip Res 17:277–281

    Google Scholar 

  • Marconi C, Sassi G, Carpinelli A, Cerretelli P (1985) Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes. Eur J Appl Physiol 54:131–135

    Google Scholar 

  • Mutch BJC, Banister EW (1983) Ammonia metabolism in exercise and fatigue: a review. Med Sci Sports Exerc 15:41–50

    Google Scholar 

  • O'Connor JE, Costell M, Grisolia S (1984) Protective effect of L-carnitine on hyperammonemia. FEBS Lett 166:331–334

    Google Scholar 

  • Orzali A, Maetzke G, Donzelli F, Rubaltelli FF (1984) Effect of carnitine on lipid metabolism in the neonate. II Carnitine addition to lipid infusion during prolonged total parenteral nutrition. Pediatrics 104:436–440

    Google Scholar 

  • Rebouche CJ (1983) Effect of dietary carnitine isomers and γ-butyrobetaine on L-carnitine biosynthesis and metabolism in the rat. J Nutr 113:1906–1913

    Google Scholar 

  • Secombe D, Burget D, Frohlich J, Hahn P, Cleator J, Gourlay RH (1984) Oral L-carnitine administration after jejunoileal by-pass surgery. Int J Obes 8:427–433

    Google Scholar 

  • Tabacco AT, Meiattini F, Moda E, Tarli P (1979) Simplified enzymic calorimetric serum urea nitrogen determination. Clin Chem 25:336–337

    Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    Google Scholar 

  • Williamson DH, Mellanby J, Krebs HA (1962) Enzymic determination of D(−)-β-hydroxybutyric acid and acetoacetic acid in blood. Biochem J 80:90–96

    Google Scholar 

  • Williamson DH (1974) L-alanine. Determination with alanine dehydrogenase. In Bergmeyer HU (ed). Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 1679–1685

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyono-Enguelle, S., Freund, H., Ott, C. et al. Prolonged submaximal exercise and L-carnitine in humans. Europ. J. Appl. Physiol. 58, 53–61 (1988). https://doi.org/10.1007/BF00636603

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00636603

Key words

Navigation