Advertisement

Roux's archives of developmental biology

, Volume 203, Issue 4, pp 230–234 | Cite as

Morphogenetic effects of 9-cis-retinoic acid on the regenerating limbs of the axolotl

  • Panagiotis A. Tsonis
  • Charles H. Washabaugh
  • Katia Del Rio-Tsonis
Short Communications

Abstract

9-cis-retinoic acid has recently been found to be a high affinity ligand for the retinoic X receptor (RXR). RXRs are believed to be involved in metabolic activities rather than in morphogenetic ones. Interestingly, RXR has been found to form heterodimers involving other receptors from the steroid family, such as the thyroid hormone receptor, vitamin D receptor or retinoic acid receptors (RARs). In this paper we examined whether or not 9-cis-retinoic acid had any morphogenetic properties on the regenerating axolotl limb. It is shown that 9-cis-retinoic acid proximalized regenerating limbs and was somewhat more potent in this action than all-trans-retinoic acid. Based on these observations, the possible roles of other receptors during pattern formation is discussed.

Key words

9-cis retinoic acid Axolotl Limb regeneration Receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumberg B, Mangelsdorf DJ, Dyck JA, Bittner DA, Evans RM, Robertis EM De (1992) Multiple retinoid-responsive receptors in a single cell: Families of retinoid “X” receptors and retinoic acid receptors in theXenopus egg. Proc Natl Acad Sci USA 89:2321–2325Google Scholar
  2. Brockes JP (1992) Retinoic acid and urodele limb regeneration. Proceedings of the 4th international conference on limb development and regeneration, Asilomar, CalifGoogle Scholar
  3. Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992) RXRα, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J 11:1409–1418Google Scholar
  4. Dollé P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ, Chambon P (1989) Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342:702–705Google Scholar
  5. Duboule D (1991) Patterning in the vertebrate limb. Curr Opin Genet Dev 1:211–216Google Scholar
  6. Eichele G (1989) Retinoids and vertebrate limb pattern formation. Trends Genet 5:4–9Google Scholar
  7. Eichele G, Tickle C, Alberts BM (1984) Microcontrolled release of biologically active compounds in chick embryos: Beads of 200-μm diameter for the local release of retinoids. Anal Biochem 142:542–555Google Scholar
  8. Giguère V, Lyn S, Yip P, Siu C-H, Amin S (1990) Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc Natl Acad Sci USA 87:6233–6237Google Scholar
  9. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis-retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406Google Scholar
  10. Kim WS, Stocum DL (1986) Retinoic acid modifies positional memory in the anteroposterior axis of regenerating axolotl limbs. Dev Biol 114:170–179Google Scholar
  11. Kliewer SA, Umasono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355:446–449Google Scholar
  12. Laudet V, Stehelin D (1992) Flexible friends. Curr Biol 2:293–295Google Scholar
  13. Leid M, Kastner P, Lyons R, Naksharti N, Saunders M, Zacharewski T, Chen J-Y, Staub A, Garnier J-M, Mader S, Chambon P (1992) Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68:377–395Google Scholar
  14. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen CL, Rosenberg M, Lovey A, Grippo JF (1992) 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature 355:359–361Google Scholar
  15. Ludolph DC, Cameron JA, Stocum DL (1990) The effects of retinoic acid on positional memory in the dorsoventral axis of the regenerating axolotl limbs. Dev Biol 140:41–52Google Scholar
  16. Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295:672–675Google Scholar
  17. Mangelsdorf D, Ong E, Dyck J, Evans M (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229Google Scholar
  18. Mohanty-Hejmadi P, Dutta SK, Mahapatra P (1992) Limbs generated at site of tail amputation in marbled balloon frog after vitamin A treatment. Nature 355:352–353Google Scholar
  19. Morgan BA, Izpisua-Belmonte J-C, Duboule D, Tabin CJ (1992) Targeted misexpression ofHox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358:236–239Google Scholar
  20. Oro A, McKeown M, Evans R (1990) Relationship between the product of theDrosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature 347:298–301Google Scholar
  21. Ragsdale CW Jr, Brockes JP (1991) Retinoids and their targets in vertebrate development. Curr Opin Cell Biol 6:928–934Google Scholar
  22. Ragsdale CW Jr, Petkovich M, Gates PB, Chambon P, Brockes JP (1989) Identification of a novel retinoic acid receptor in regenerative tissues of the newt. Nature 341:654–657Google Scholar
  23. Riley BB, Savage MP, Simandl BK, Olwin BB, Fallon JF (1993) Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118:95–104Google Scholar
  24. Sherman DR, Lloyd RS, Chytil F (1987) Rat cellular retinol-binding protein: cDNA sequence and rapid retinol-dependent accumulation of mRNA. Proc Natl Acad Sci USA 84:3209–3213Google Scholar
  25. Stocum DL, Maden M (1990) Regenerating limbs. Methods Enzymol 190:189–201Google Scholar
  26. Thaller C, Eichele G (1987) Identification and spacial distribution of retinoids in the developing chick limb bud. Nature 327:625–628Google Scholar
  27. Thaller C, Eichele G (1990) Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature 345:815–819Google Scholar
  28. Thaller C, Hofmann C, Eichele G (1993) 9-cis-retinoic acid, a potent inducer of digit pattern duplications in the chick wing bud. Development 118:957–965Google Scholar
  29. Tickle C, Alberts B, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296:564–566Google Scholar
  30. Tickle C, Lee J, Eichele G (1985) A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development. Dev Biol 109:82–95Google Scholar
  31. Thoms SD, Stocum DL (1984) Retinoic acid-induced pattern duplication in regenerating urodele limbs. Dev Biol 103:319–328Google Scholar
  32. Wanek N, Gardiner DM, Muneoka K, Bryant SV (1991) Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature 350:81–83Google Scholar
  33. Zhang X-K, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran T, Pfahl M (1992) Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358:587–591Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Panagiotis A. Tsonis
    • 1
  • Charles H. Washabaugh
    • 1
  • Katia Del Rio-Tsonis
    • 1
  1. 1.Laboratory of Molecular Biology, Department of BiologyUniversity of DaytonDaytonUSA

Personalised recommendations