Skip to main content
Log in

Joint application of an empirical and mechanistic model for regional lake acidification

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The empirical direct distribution model for lake acidification is calibrated for use in an integrated assessment model which predicts the regional impact of an acid deposition control strategy. The calibration is based on the mechanistic Model of Acidification of Groundwater in Catchments (MAGIC). The models are applied jointly to a set of 33 statistically-selected lakes in the Adirondack region of New York. Calibration of the direct distribution model is based on a step-function application of acid deposition to MAGIC. Comparative evaluations of the resulting model predictions are made using historic deposition estimates and two alternative future deposition scenarios. The predictions of the direct distribution model match well the shapes and patterns of change of the regional distributions of ANC and pH predicted by MAGIC, the short- and medium-term dynamics of these changes, and the effect of including organic acids. However, small, long-term decreases in the fraction of incoming acid deposition neutralized by lakes and their watersheds predicted by MAGIC are not reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo, J., Amann, M., Hettelingh, J.-P., Holmberg, M., Hordijk, L., Kämäri, J., Kauppi, L., Kauppi, P., Kornai, G., and Makela, M.: 1987, ‘Acidification in Europe: A Simulation Model for Evaluating Control Strategies’,Ambio 16(5). 232–245.

    Google Scholar 

  • Bouzaher, A., Lakshminarayan, P. G., Cabe, R., Carriquiry, A., Gassman, P. W. and Shogren, J. F.: 1993, ‘Metamodels and Nonpoint Pollution Policy in Agriculture’,Water Resources Research 29(6), 1579–1587.

    Google Scholar 

  • Brakke, D. F. and Henriksen, A.: 1989, ‘Uncertainties in Using Empirical, Steady-state Models to Estimate Critical Loads of Strong Acids to Lakes’,Regional Acidification Models: Geographic Extent and Time Development, J. Kämäri, D. F. Brakke, A. Jenkins, S. A. Norton, R. E. Wright, (Eds.), Berlin: Springer-Verlag, pp. 45–54.

    Google Scholar 

  • Church, M. R., Thornton, K. W., Shaffer, P. W., Stevens, D. L., Rochelle, B. P., Holdren, R. G., Johnson, M. G.: Lee, J. J., Turner, R. S., Cassell, D. L., Lammers, D. A., Campbell, W. G., Liff, C. I., Brandt, C. C., Liegel, L. H., Bishop, G. D., Mortenson, D. C., and Pierson, S. M. S. M.: 1989, ‘Future Effects of Long-term Sulfur Deposition on Surface Water Chemistry in the Northeast and Southeastern Blue Ridge Province (Results of the Direct/Delayed Response Project)’, EPA 4600/3-89/061, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Galloway, J. N., and Wright, R. F.: 1985a, ‘Time Scales of Catchment Acidification: A Quantitative Model for Estimating Freshwater Acidification’,Environ. Sci. Technol. 19, 1144–1149.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M., and Galloway, J. N.: 1985b, ‘Modeling the Effects of Acid Deposition: Assessment of a Lumped Parameter Model for Soil Water and Streamwater Chemistry’,Water Resour. Res. 21, 51–63.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M., and Galloway, J. N.: 1985c, ‘Modeling the Effects of Acid Deposition: Estimation of Long-term Water Quality Responses in a Small Forested Catchment’,Water Resour. Res. 21(11), 1591–1601.

    Google Scholar 

  • Cosby, B. J.: 1987, ‘Modeling Reversibility of Acidification with Mathematical Models’,Reversibility of Acidification, H. Barth (Ed.) London, Elsevier Applied Sciences, pp. 114–125.

    Google Scholar 

  • Crawford, S. L., DeGroot, M. H., Kadane, J. B. and Small, M. J.: 1992, ‘Modeling Lake-Chemistry Distributions: Approximate Bayesian Methods for Estimating a Finite Mixture Model’,Technometrics 34(4), 441–453.

    Google Scholar 

  • Cumming, B. F., Smol, J. P., Kingston, J. C., Charles, D. F., Birks, H. J. B., Camburn, K. E., Dixit, S. S., Uutala, A. J. and Selle, A. R.: 1992, ‘How Much Acidification Has Occurred in Adirondack Region Lakes (New York, USA) Since Preindustrial times?’,Can. J. Fish. Aquat. Sci. 49, 128–141.

    Google Scholar 

  • Davis, P. A., Sheppard, M. I. and Andres, T. H.: 1993, ‘A Simple Model to Predict the Long-term Fate of Contaminants in Unsaturated Soils’,Waste Management 13, 25–40.

    Google Scholar 

  • Driscoll, C. T., Lehtinen, M. and Sullivan, T. J.: 1994, ‘Modeling the Acid-base Chemistry of Organic Solutes in Adirondack N. Y. Lakes’,Water Resour. Res. 30, 297–306.

    Google Scholar 

  • El-Shaarawi, A. H. and Naderi, A.: 1990, ‘A Probability Model for Acid Rain Data’,Water Res. 24, 1335–1340.

    Google Scholar 

  • Henriksen, A.: 1979, ‘A Simple Approach for Identifying and Measuring Acidification of Freshwater’,Nature 278, 542–545.

    Google Scholar 

  • Henriksen, A.: 1984, ‘Changes in Base Cation Concentration Due to Freshwater Acidification’,Verh. Internat. Verein. Limnol. 22, 692–698.

    Google Scholar 

  • Henriksen, A., Lien, L., Traaen, T. S., Sevaldrud, I. S. and Brakke, D. F.: 1988, ‘Lake Acidification in Norway — Present and predicted Chemical Status’,Ambio 17, 259–266.

    Google Scholar 

  • Hornberger, G. M., Cosby, B. J. and Galloway, J. N.: 1986, ‘Modeling the Effects of Acid Deposition: Uncertainty and Spatial Variability in Estimation of Long-term Sulfate Dynamics in a Region’,Water Resour. Res. 22(8), 1293–1302.

    Google Scholar 

  • Kämäri, J. (Ed.): 1990,Impact Models to Assess Regional Acidification, Dordrecht: Publishers. Kluwer Academic.

    Google Scholar 

  • Kleijnen, J. P. C.: 1987,Statistical Tools for Similation Practitioners, New York: Marcel Dekker.

    Google Scholar 

  • Kretser, W., Gallagher, J. and Nicolette, J.: 1989,Adirondack Lakes Study, 1984–1987, Adirondack Lakes Survey Corporation, Ray Brook, NY.

    Google Scholar 

  • Labieniec, P. A., Small, M. J. and Cosby, B. J.: 1989, ‘Regional Distributions of Lake Chemistry Predicted by Mechanistic and Empirical Lake Acidification Models’,Regional Acidification models: Geographic Extent and Time Development, J. Kämäri, D. F. Brakke, A. Jenkins, S. A. Norton and R. F. Wright (eds.), Berlin Springer-Verlag, pp. 185–202.

  • Munson, R. K. and Gherini, S. A.: 1993, ‘Influence of organic acids on the pH and acid-neutralizing capacity of Adirondack lakes’,Water Resour. Res. 29(4), 891–899.

    Google Scholar 

  • NAPAP: 1991,Acidic Deposition: State of Science and Technology, Volumes I–IV, National Acid Precipitation Assessment Program, Washington, DC.

    Google Scholar 

  • Oliver, B. G., Thurman, E. M. and Malcolm, R. L.: 1983, ‘The Contribution of Humic Substances to the Acidity of Colored Natural Waters’,Geochim, Cosmochin, Acta 47, 2031–2035.

    Google Scholar 

  • Posch, M. and Kämäri, J.: 1990, ‘Modeling Regional Acidification of Finnish Lakes’,Impact Models to Assess Regional Acidification, J. Kämäri, (ed.), Dordrecht: Kluwer Academic Publishers, pp. 145–166.

    Google Scholar 

  • Robinson, D. C. E. and Marmorek, D. R.: 1991, ‘Direct Distribution Models of Acidification’,Methods for Projecting Future Changes in Surface Water Acid-Base Chemistry, Thornton, K. W. Marmorek, D. T., Ryan, P. F. (Eds.) NAPAP State of Science and Technology Report 14, National Acid Precipitation Assessment Program, Washington, DC, pp. 79–82.

    Google Scholar 

  • Rubin, E. S., Small, M. J. Bloyd, C. N., Marnicio, R. J. and Henrion, M.: 1990, ‘Atmospheric Deposition Assessment Model: Applications to Regional Aquatic Acidification in Eastern North America’,Impact Models to Assess Regional Acidification, J. Kämäri (ed.), Dordrecht: Kluwer Academic, Publishers, pp. 253–284.

    Google Scholar 

  • Rubin, E. S., Small, M. J. Bloyd, C. N. and Henrion, M.: 1992, ‘Integrated Assessment of Aciddeposition Effects on Lake Acidification’,J. Environ. Engineering, ASCE,118, 120–134.

    Google Scholar 

  • Schecher, W. D. and Driscoll, C. T.: 1988, ‘Principles and Applications of Surface Water Acidification Models’,Hazard Assessment of Chemicals, J. Saxena, (ed.) Vol. 6, New York: Hemisphere Publishing, pp. 187–224.

    Google Scholar 

  • Schindler, D. W., Kaslan, S. E. M. and Hesslein, R. H.: 1989, ‘Biological Impoverishment in Lakes of the Midwestern and Northeastern United States From Acid Rain’,Environ. Sci. Technol. 25(5), 573–580.

    Google Scholar 

  • Small, M. J. and Sutton, M. C.,: 1986a, ‘A Regional pH-Alkalinity Relationship’,Water Research 20, 335–343.

    Google Scholar 

  • Small, M. J. and Sutton, M. C.: 1986b, ‘A Direct Distribution Model for Regional Aquatic Acidification’,Water Resour. Res. 22(13), 1749–1758.

    Google Scholar 

  • Small, M. J., Labieniec, P. A. and Sutton, M. C.: 1987, ‘Modeling Distribution of Aquatic Chemistry in Regions Impacted by Acid Deposition’,Systems Analysis in Water Quality Management, M. B. Beck, (Ed.) Oxford: Pergamon Press, pp. 161–172.

    Google Scholar 

  • Small, M. J., Sutton, M. C. and Milke, M. W.: 1988, ‘Parametric Distributions of Regional Lake Chemistry: Fitted and derived’,Environ. Sci. Techno. 22(2), 196–204.

    Google Scholar 

  • Small, M. J., Labieniec, P. A. and Sutton, M. C.: 1990, ‘Identification of a Direct Distribution Model from a Regionalized Mechanistic Model of Aquatic Acidification’,Impact Models to Assess Regional Acidification, J. Kämäri, (ed.), Dordrecht: Kluwer Academic Publishers, pp. 167–181.

    Google Scholar 

  • Small, M. J.: 1991, ‘Parametric Distributions’,Historical Changes in Surface Water Acid-Base Chemistry in Response to Acidic Deposition, NAPAP State of Science and Technology Report No. 11, T. J. Sullivan, Washington DC: National Acid Precipitation Assessment Program, pp. 77–81, 102–107.

    Google Scholar 

  • Sullivan, T. J.: 1990,Historical Changes in Surface Water Acid-Base Chemistry in Response to Acid Deposition, NAPAP State of Science and Technology Report Number 11, Washington, DC: National Acid Precipitation Assessment Program.

    Google Scholar 

  • Sullivan, T. J., Charles, D. F., Smol, J. P., Cumming, B. F., Selle, A. R., Thomas, D. R., Bernert, J. A. and Dixit, S. S.: 1990, ‘Quantification of Changes in Lakewater Chemistry in Response to Acid Deposition’Nature 345, 54–58.

    Google Scholar 

  • Sullivan, T. J. Cosby, B. J., Bernert, J. A., Charles, D. F., Jenne, E. A., Selle, A. R., and Eilers, J. M.: 1991,Comparison of MAGIC and Diatom Paleolimnological Model Hindcasts of Lakewater Acidification in the Adirondack Region of New York, Pacific Northwest Laboratory for U.S. DOE, PNL-7487, UC-603, Pacific Northwest Laboratory, Battelle Memorial Institute, Richland, Washington.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Charles, D. F., and Hemond, H. F.: 1994, ‘Influence of Organic Acids on Model Projections of Lake Acidification’,Environmental Science and Technology (in review).

  • Thornton, K. W., Marmorek, D. R. and Ryan, P. F.: 1991,Methods for Projecting Future Changes in Surface Water Acid-Base Chemistry, Washington, DC: NAPAP State of Science and Technology Report 14, National Acid Precipitation Assessment Program.

    Google Scholar 

  • Wright, R. F. and Henriksen, A.: 1983, ‘Restoration of Norwegian Lakes by Reduction in Sulphur Deposition’,Nature 305, 422–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, M.J., Cosby, B.J., Marnicio, R.J. et al. Joint application of an empirical and mechanistic model for regional lake acidification. Environ Monit Assess 35, 113–136 (1995). https://doi.org/10.1007/BF00633710

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00633710

Keywords

Navigation