Journal of Materials Science

, Volume 8, Issue 8, pp 1065–1070 | Cite as

Temperature and concentration dependence of the critical resolved shear stress of cadmium-zinc alloy single crystals

  • M. Rojko
  • P. Lukáč


The increase of the critical resolved shear stress of cadmium single crystals by additions of zinc has been investigated in the temperature range 77 to 295 K. The temperature dependence of the critical resolved shear stress can be divided into two temperature regions. At all temperatures the critical resolved shear stress was found to increase withc2/3 wherec is the atomic concentration of zinc as solute. The concentration dependence of the plateau stress is explained according to the theory of Labusch [5].


Polymer Zinc Shear Stress Cadmium Atomic Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Haasen, “Physical Metallurgy” (ed. R. W. Cahn) (North Holland, Amsterdam, 1965) p 821Google Scholar
  2. 2.
    Idem, Z. Metallk. 55 (1964) 55.Google Scholar
  3. 3.
    Idem, Trans. JIM, Suppl. 8 (1968) XL.Google Scholar
  4. 4.
    R. L. Fleischer, “Strengthening of Metals” (ed. D. Peckner) (Reinhold, New York, 1964) p. 93.Google Scholar
  5. 5.
    R. Labusch,Phys. Stat. Sol. 41 (1970) 659.Google Scholar
  6. 6.
    P. Jax, P. Kratochvíl, andP. Haasen,Acta Metallurgica,18 (1970) 237.Google Scholar
  7. 7.
    H. Scharf, P. Lukáč, M. Boček, andP. Haasen,Z. Metallk. 59 (1968) 799.Google Scholar
  8. 8.
    A. Akhtar andE. Teghtsoonian,Acta Metallurgica,17 (1969) 1340.Google Scholar
  9. 9.
    Idem, Phil. Mag. 25 (1972) 897.Google Scholar
  10. 10.
    P. Lukáč andZ. Trojanová,Z. Metallk. 58 (1967) 57.Google Scholar
  11. 11.
    P. Lukáč andL. D. Will,Phys. Stat. Sol. (a) 5 (1971) K 179.Google Scholar
  12. 12.
    H. Suzuki, “Dislocations and Mechanical Properties of Crystals” (ed. J. C. Fisher, W. G. Johnston, R. Thomson and T. Vreeland jun.) (J. Wiley, New York, 1957).Google Scholar
  13. 13.
    P. A. Flinn,Acta Metallurgica 6 (1958) 631.Google Scholar
  14. 14.
    Z. Hashin,J. Appl. Mech. 29 (1962) 143.Google Scholar
  15. 15.
    W. B. Pearson, “Handbook of Lattice Spacings and Structures of Metals and Alloys” (Pergamon Press, London, 1958).Google Scholar
  16. 16.
    D. Hardie andR. N. Parkins,Phil. Mag. 4 (1959) 815.Google Scholar
  17. 17.
    H. W. King,J. Mater. Sci. 1 (1966) 79.Google Scholar
  18. 18.
    H. Scharf andH. G. Friedel,Z. Metallk. 58 (1967) 729.Google Scholar
  19. 19.
    C. W. Garland andJ. Silverman,Phys. Rev. 119 (1960) 1218.Google Scholar
  20. 20.
    G. A. Alers andJ. R. Neighbours,J. Phys. Chem. Solids 7 (1958) 58.Google Scholar
  21. 21.
    L. I. Slutsky andC. W. Garland,Phys. Rev. 107 (1957) 972.Google Scholar
  22. 22.
    J. Friedel, “Dislocations” (Pergamon Press, Oxford, 1964).Google Scholar
  23. 23.
    R. Labusch,Acta Metallurgica,20 (1972) 917.Google Scholar
  24. 24.
    R. Labusch, G. Grange, J. Ahearn, andP. Haasen, Rept. J. Dorn's Memorial Symposium, Cleveland (1972) to be published.Google Scholar
  25. 25.
    K. D. Rogausch, Thesis, University of Göttingen (1963); see also [2].Google Scholar

Copyright information

© Chapman and Hall Ltd. 1973

Authors and Affiliations

  • M. Rojko
    • 1
  • P. Lukáč
    • 1
  1. 1.Department of Solid State Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzechoslovakia

Personalised recommendations