Optical and Quantum Electronics

, Volume 27, Issue 4, pp 225–238 | Cite as

Optically-pumped semiconductor squeezed-light generation

  • J. Arnaud


The theory presented shows that light emitted by low-temperature semiconductors under intense optical pumping (with fluctuations at the shot-noise level, SNL) should be amplitude-squeezed down to half the SNL at nonzeri frequencies. Amplitude squeezing may also be obtained at zero frequency when spontaneous carrier recombination is significant. It is essential that the optical gain depends on photon emission rate, e.g. as a result of spectral-hole burning. A commuting-number theory that agrees exactly with quantum theory for large particle numbers is employed. Comparison is made with results previously reported for three-level atom lasers.


Burning Recombination Communication Network Large Particle Quantum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. M.GOLUBEV and I. V.SOKOLOV,Sov. Phys. JETP 60 (1984) 234.Google Scholar
  2. 2.
    Y.YAMAMOTO, ed.Coherence, Amplification and Quantum Effects in Semiconductor Lasers (Wiley, New York, 1991).Google Scholar
  3. 3.
    F.HAAKE, S. M.TAN and D.F.WALLS,Phys. Rev. A 40 (1989) 7121.Google Scholar
  4. 4.
    J.BERGOU, L.DAVIDOVITCH, M.ORSZAG, C.BENKERT, M.HILLERY and M. O.SCULLY,Phys. Rev. A 40 (1989) 5073.Google Scholar
  5. 5.
    M. I.KOLOBOV, L.DAVIDOVICH, E.GIACOBINO and C.FABRE,Phys. Rev. A 47 (1993) 1431.Google Scholar
  6. 6.
    Y.VIDAL, S.GAILLARD and J.ARNAUD,Applied Optics 33 (1994) 6947.Google Scholar
  7. 7.
    J. ARNAUD, European Semiconductor Laser Workshop, Rigi-Kaltbad, Switzerland, Sept. 9–11, 1993 (unpublished talk).Google Scholar
  8. 8.
    J.ARNAUD and M.ESTÉBAN,Proc. IEE, Pt J 137 (1990) 55.Google Scholar
  9. 9.
    J.ARNAUD,Phys. Rev. A 48 (1993) 2235.Google Scholar
  10. 10.
    M.LAX,Phys. Rev. 160(2) (1967) 290.Google Scholar
  11. 11.
    M.ESTÉBAN and J.ARNAUD,Proc. IEE Pt J 138 (1991) 79.Google Scholar
  12. 12.
    C.VEDRENNE and J.ARNAUD,Proc. IEE, Pt H 129 (1982) 183.Google Scholar
  13. 13.
    V. B.BRAGINSKY, M. L.GORODETSKY and V. S.ILCHENKO,Phys. Lett. A 137 (1989) 393.Google Scholar
  14. 14.
    R. J.COOK,Progress in Optics XXVIII, edited by E.Wolf (North-Holland, Amsterdam, 1990). C. COHEN TANNOUDJI, B. ZAMBON and E. ARIMONDO,J. Opt. Soc. Am. B 10 (1993) 2107.Google Scholar
  15. 15.
    R. J.GLAUBER,Quantum Optics and Electronics (Gordon and Breach, New York, 1964) p. 132.Google Scholar
  16. 16.
    P. N.BUTCHER and D.COTTER,The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1990).Google Scholar
  17. 17.
    A.PAPOULIS,Probabilities, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Arnaud
    • 1
  1. 1.Equipe de Microoptoélectronique de Montpellier, Unité associée au CNRS 392, USTLUniversité de Montpellier IIMontpellier Cédex 5France

Personalised recommendations