Skip to main content
Log in

Concentration dependence of the anomalous thermoelectric power of dilute magnetic alloys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

It has been pointed out recently by one of us (M.S.R.C.) that the variation of the Kondo slopesd (of the ρ/c vs. lnT curves) of dilute magnetic alloys containing a finite solute concentrationc bears a close resemblance to the variation of the functionf (=cos6 ν cos2ν) with the phase shift ν for ordinary spin-independent scattering. Sinced is itself primarily determined byf the inference is that ν is a function ofc when the criterion of infinite dilution is violated. For infinite dilutions theory expects the anomalous thermoelectric power in such alloys to be independent ofc as well as ofT. Taking the experimentally observed extremum in the TEP (S m) as an approximation to such a TEP, we report, for finite solute concentrations, the variation ofS m withc, to correspond with the variation off′(=cos6 ν sin2ν) with ν. This substantiates the above inference. In fact, one can predict the sign and the variation (withc) ofd, knowing that ofS m, and vice versa, for a given dilute magnetic alloy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Van den Berg,Progr. Low Temp. Phys. 4, 194 (1964).

    Google Scholar 

  2. M. D. Daybell and W. A. Steyert,Rev. Mod. Phys. 40, 380 (1968).

    Google Scholar 

  3. J. Kondo,Progr. Theoret. Phys. (Kyoto)32, 37 (1964).

    Google Scholar 

  4. J. Kondo,Progr. Theoret. Phys. (Kyoto)34, 372 (1965).

    Google Scholar 

  5. D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton,Proc. Roy. Soc. (London)A266, 161 (1962).

    Google Scholar 

  6. A. Kjekshus and W. B. Pearson,Can. J. Phys. 40, 98 (1962).

    Google Scholar 

  7. K. Fischer,Phys. Rev. 158, 613 (1967).

    Google Scholar 

  8. M. S. R. Chari,Phys. Kondensierten Materie 11, 317 (1970).

    Google Scholar 

  9. P. G. De Gennes,J. Phys. Radium 23, 630 (1962);Metallic Solid Solutions, J. Friedel and A. Guiner, eds. (W. A. Benjamin, New York, 1963), paper VI.

    Google Scholar 

  10. K. Yosida,Phys. Rev. 107, 396 (1957).

    Google Scholar 

  11. Y. Nagaoka,Progr. Theoret. Phys. (Kyoto)39, 533 (1968).

    Google Scholar 

  12. H. Suhl,Phys. Rev. 141, 483 (1966);Physics 2, 39 (1965).

    Google Scholar 

  13. K. Fischer,J. Phys. Chem. Solids 30, 539 (1969).

    Google Scholar 

  14. J. Kondo,Phys. Rev. 169, 437 (1968).

    Google Scholar 

  15. R. W. Schmitt and I. S. Jacobs,J. Phys. Chem. Solids 3, 324 (1957).

    Google Scholar 

  16. A. N. Gerritsen and J. O. Linde,Physica 18, 877 (1952).

    Google Scholar 

  17. J. S. Kouvel,J. Phys. Chem. Solids 21, 57 (1961).

    Google Scholar 

  18. N. S. Natarajan and M. S. R. Chari, unpublished data.

  19. H. L. Malm and S. B. Woods,Can. J. Phys. 44, 2293 (1966).

    Google Scholar 

  20. A. N. Gerritsen and J. O. Linde,Physica 17, 573 (1951).

    Google Scholar 

  21. W. H. Keesom and C. J. Matthijs,Physica,2, 623 (1935).

    Google Scholar 

  22. S. Tanuma,J. Phys. Soc. (Japan)14, 541 (1959).

    Google Scholar 

  23. B. Caroli,J. Phys. Chem. Solids 28, 1427 (1967).

    Google Scholar 

  24. P. Costa-Ribeiro, J. Souletie, and D. Thoulouze,Phys. Rev. Letters 24, 900 (1970).

    Google Scholar 

  25. J. W. Loram, P. J. Ford, and T. E. Whall,J. Phys. Chem. Solids 31, 763 (1970).

    Google Scholar 

  26. R. Tournier and A. Blandin,Phys. Rev. Letters 24, 397 (1970).

    Google Scholar 

  27. A. N. Gerritsen,Physica 25, 489 (1959).

    Google Scholar 

  28. G. J. Van den Berg, J. Van Herk, and B. Knook,Proc. 10th Int. Conf. on Low Temp. Physics (Moscow, 1966), Vol. 4, p. 272.

  29. C. Domenicali and E. L. Christenson,J. Appl. Phys. 32, 2450 (1961).

    Google Scholar 

  30. B. R. Coles,Phys. Letters 8, 243 (1964).

    Google Scholar 

  31. H. Nagasawa,J. Phys. Soc. (Japan)25, 691 (1968).

    Google Scholar 

  32. K. Kume,J. Phys. Soc. (Japan)22, 1116 (1967).

    Google Scholar 

  33. K. Kume,J. Phys. Soc. (Japan)22, 1309 (1967).

    Google Scholar 

  34. H. Suhl and D. Wong,Physics 3, 17 (1967).

    Google Scholar 

  35. K. Kume,J. Phys. Soc. (Japan)23, 1226 (1967).

    Google Scholar 

  36. K. Kume,J. Phys. Soc. (Japan)22, 1115 (1967).

    Google Scholar 

  37. M. D. Daybell, D. L. Kohlstedt, and W. A. Steyert,Solid State Commun. 5, 871 (1967).

    Google Scholar 

  38. E. Brewig, W. Kierspe, U. Schotte, and D. Wagner,J. Phys. Chem. Solids 30, 483 (1969).

    Google Scholar 

  39. H. Eicke and H. D. Hahlbohm,Z. Metallk. 55, 524 (1964).

    Google Scholar 

  40. W. Kierspe,Z. Metallk. 58, 895 (1967).

    Google Scholar 

  41. K. Kume and O. Kogure,J. Phys. Soc. (Japan)25, 930 (1968).

    Google Scholar 

  42. N. F. Mott and H. S. W. MasseyTheory of Atomic Collisions (Cambridge University Press, New York, 1965), p. 30.

    Google Scholar 

  43. See, for example, R. M. Eisberg,Fundamentals of Modern Physics (John Wiley & Sons, New York, 1961), p. 545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chari, M.S.R., Natarajan, N.S. & Sharma, R.G. Concentration dependence of the anomalous thermoelectric power of dilute magnetic alloys. J Low Temp Phys 4, 503–513 (1971). https://doi.org/10.1007/BF00631129

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00631129

Keywords

Navigation