Water, Air, and Soil Pollution

, Volume 31, Issue 1–2, pp 89–94 | Cite as

Model of internal alkalinity generation: Sulfate retention component

  • L. A. Baker
  • P. L. Brezonik
  • C. D. Pollman
Article

Abstract

Internal alkalinity generation is modeled by an input-output approach in which equations to describe budgets for sulfate, nitrate, ammonium, and base cations are linked to an alkalinity budget equation. Calibration of the sulfate model using ion budgets for 14 softwater lakes shows that the sulfate sink coefficient is reasonably uniform (mean = 0.46 m yr−1) and can be used to predict sulfate retention. Model predictions show that internal sulfate sinks are needed to correctly predict lakewater [SO42−] and that in-lake sulfate sinks can account for over 50% of input. For experimentally acidified Little Rock Lake, Wisconsin, the sulfate model predicts 90% recovery of [SO42−] 13 years after acid additions stop.

Keywords

Sulfate Ammonium Nitrate Model Prediction SO42 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, L. A., Pollman, C. D., and Brezonik, P. L. : 1985, ‘Development of Interpretive Models for Lake Acidification in Florida’, inFlorida Acid Deposition Study, Phase IV, Environmental Sciences and Engineering, Inc., ESE 83-152-0602-0120.Google Scholar
  2. Baker, L. A., and Brezonik, P. L.: 1986, ‘Model of Internal Alkalinity Generation for Softwater Lakes’, in preparation.Google Scholar
  3. Baker, L. A., and Brezonik, P. L., and Edgerton, E. S.: 1986,Water Resources Research 22, 175.Google Scholar
  4. Brezonik, P.L., Baker, L., Eaton, J., Frost, T., Garrison, P., Kratz, T. Magnuson, J., Perry, J., Perry, T., Rose, W., Swenson, W., Watras, C., and Webster, K.: 1986,Water. Air, Soil Pollut., in review.Google Scholar
  5. Cook, R. B., Kelly, C. A.; Schindler, D. W., and Turner, M. A.: 1986,Limnol. Oceanogr. 31, 134.Google Scholar
  6. Dillon, P. J: 1986, personal communication.Google Scholar
  7. Hultberg, H.: 1985,Ecological Bulletin (Stockholm) 37, 133.Google Scholar
  8. Mitchell, M.J., David M.B., and Uutala, A.J.: 1985,Hydrobiologica 121, 121.Google Scholar
  9. Perry, T. E., Baker, L. A., and Brezonik, P. L.: 1986,‘Comparison of Sulfate Reduction in Microcosms, Mesocosms, andin situ at Little Rock Lake’,Proc. Seventh N. Am. Lake Mgmt. Soc. Meeting, in press.Google Scholar
  10. Schindler, D. W., Rudd, J. W. M, Kelly, C. A., and Turner, M. A.: 1986a,Water, Air, Soil Pollut., in review.Google Scholar
  11. Schindler, D. W., Turner, M. A., Stainton, M. P., and Linsey, G. A.: 1986b,Science 232, 844.Google Scholar
  12. Schnoor, J. L.: 1985,‘cidification of Aquatic and Terrestial Systems’ in Stumm, W. and Schnoor, J. L. (eds.),Chemical Processes in Lakes, John Wiley and Sons, 311.Google Scholar
  13. Schnoor, J. L.: 1986, personal communication.Google Scholar
  14. Vollenweider, R. A.: 1975,Scheiz. Z. Hydrol. 37, 53.Google Scholar
  15. Wentz, D. A., Garrison, P. J., and Bockheim, J. G.: 1986. ‘Chemical input-output budgets for Round and East Eight Mile lakes’, report to Electric Power Research Institute.Google Scholar
  16. Wright, R.F.: 1983,Hydrobiologica 101, 1.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • L. A. Baker
    • 1
  • P. L. Brezonik
    • 1
  • C. D. Pollman
    • 2
  1. 1.Dept. Civil and Mineral EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.KBN Engineering and Applied SciencesGainesville

Personalised recommendations