Skip to main content
Log in

Model of internal alkalinity generation: Sulfate retention component

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Internal alkalinity generation is modeled by an input-output approach in which equations to describe budgets for sulfate, nitrate, ammonium, and base cations are linked to an alkalinity budget equation. Calibration of the sulfate model using ion budgets for 14 softwater lakes shows that the sulfate sink coefficient is reasonably uniform (mean = 0.46 m yr−1) and can be used to predict sulfate retention. Model predictions show that internal sulfate sinks are needed to correctly predict lakewater [SO4 2−] and that in-lake sulfate sinks can account for over 50% of input. For experimentally acidified Little Rock Lake, Wisconsin, the sulfate model predicts 90% recovery of [SO4 2−] 13 years after acid additions stop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, L. A., Pollman, C. D., and Brezonik, P. L. : 1985, ‘Development of Interpretive Models for Lake Acidification in Florida’, inFlorida Acid Deposition Study, Phase IV, Environmental Sciences and Engineering, Inc., ESE 83-152-0602-0120.

  • Baker, L. A., and Brezonik, P. L.: 1986, ‘Model of Internal Alkalinity Generation for Softwater Lakes’, in preparation.

  • Baker, L. A., and Brezonik, P. L., and Edgerton, E. S.: 1986,Water Resources Research 22, 175.

    Google Scholar 

  • Brezonik, P.L., Baker, L., Eaton, J., Frost, T., Garrison, P., Kratz, T. Magnuson, J., Perry, J., Perry, T., Rose, W., Swenson, W., Watras, C., and Webster, K.: 1986,Water. Air, Soil Pollut., in review.

  • Cook, R. B., Kelly, C. A.; Schindler, D. W., and Turner, M. A.: 1986,Limnol. Oceanogr. 31, 134.

    Google Scholar 

  • Dillon, P. J: 1986, personal communication.

  • Hultberg, H.: 1985,Ecological Bulletin (Stockholm) 37, 133.

    Google Scholar 

  • Mitchell, M.J., David M.B., and Uutala, A.J.: 1985,Hydrobiologica 121, 121.

    Google Scholar 

  • Perry, T. E., Baker, L. A., and Brezonik, P. L.: 1986,‘Comparison of Sulfate Reduction in Microcosms, Mesocosms, andin situ at Little Rock Lake’,Proc. Seventh N. Am. Lake Mgmt. Soc. Meeting, in press.

  • Schindler, D. W., Rudd, J. W. M, Kelly, C. A., and Turner, M. A.: 1986a,Water, Air, Soil Pollut., in review.

  • Schindler, D. W., Turner, M. A., Stainton, M. P., and Linsey, G. A.: 1986b,Science 232, 844.

    Google Scholar 

  • Schnoor, J. L.: 1985,‘cidification of Aquatic and Terrestial Systems’ in Stumm, W. and Schnoor, J. L. (eds.),Chemical Processes in Lakes, John Wiley and Sons, 311.

  • Schnoor, J. L.: 1986, personal communication.

  • Vollenweider, R. A.: 1975,Scheiz. Z. Hydrol. 37, 53.

    Google Scholar 

  • Wentz, D. A., Garrison, P. J., and Bockheim, J. G.: 1986. ‘Chemical input-output budgets for Round and East Eight Mile lakes’, report to Electric Power Research Institute.

  • Wright, R.F.: 1983,Hydrobiologica 101, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, L.A., Brezonik, P.L. & Pollman, C.D. Model of internal alkalinity generation: Sulfate retention component. Water Air Soil Pollut 31, 89–94 (1986). https://doi.org/10.1007/BF00630822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00630822

Keywords

Navigation