Skip to main content
Log in

Liquid4He. I. Binding energy and excitation energy spectrum from two-body correlations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

As a first step in a theoretical study of the properties of liquid4He we have calculated the binding energy from two-body correlations in the system. Using an effective interaction or reaction matrix obtained by a modified Brueckner theory, low-temperature properties such as the binding energy, the elementary excitation energy spectrum, and the velocity of first (ordinary) sound are calculated or estimated. For simplicity we use the approximation of a reference energy spectrum with a quadratic momentum dependence for the input single-particle energy spectrum, which in principle should be fitted to self-consistent single-particle energies. The intermediate-state potential energies are, however, chosen to be equal to zero. Hence, the three-body energy contribution and also higher order energy contributions must be estimated by separate calculations. A self-consistent solution is obtained through the depletion of the zero-momentum state, which is also calculated. The calculations are done for two different two-body potentials, an Yntema-Schneider potential given by Brueckner and Gammel, and a Frost-Musulin potential given by Bruch and McGee. The theoretical results are −3.1 to −4.0°K for the binding energy, 39–44% for the depletion, and 176–217 m/sec for the sound velocity. The corresponding experimental results are −7°K, 83%, and 238.3 m/sec, respectively, i.e., the difference is generally within a factor of two. The agreement with experimental results is reasonably good (or bad), especially since three-body and higher order cluster terms are not included in this first approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Landau,J. Phys. USSR 5, 7 (1941);8, 1 (1944);11, 91 (1947).

    Google Scholar 

  2. L. Landau,Phys. Rev. 60, 356 (1941);75, 884 (1949).

    Google Scholar 

  3. M. Cohen and R. P. Feynman,Phys. Rev. 107, 13 (1957).

    Google Scholar 

  4. R. Jastrow,Phys. Rev. 98, 1479 (1955).

    Google Scholar 

  5. R. Abe,Progr. Theoret. Phys. 19, 57 (1958);19, 407 (1958).

    Google Scholar 

  6. F. Y. Wu and E. Feenberg,Phys. Rev. 122, 739 (1961).

    Google Scholar 

  7. W. L. McMillan,Phys. Rev. 138, A442 (1965).

    Google Scholar 

  8. W. E. Massey,Phys. Rev. 151, 153 (1966);157, 190 (1967).

    Google Scholar 

  9. D. Schiff and L. Verlet,Phys. Rev. 160, 208 (1967).

    Google Scholar 

  10. W. E. Massey and C.-W. Woo,Phys. Rev. 164, 256 (1967).

    Google Scholar 

  11. O. Penrose and L. Onsager,Phys. Rev. 104, 576 (1956).

    Google Scholar 

  12. S. T. Beliaev,Soviet Phys.—JETP 7, 289 (1958);7, 299 (1958).

    Google Scholar 

  13. N. M. Hugenholtz and D. Pines,Phys. Rev. 116, 489 (1959).

    Google Scholar 

  14. A. J. Kromminga and M. Bolsterli,Phys. Rev. 128, 2887 (1962).

    Google Scholar 

  15. M. Girardeau and R. Arnowitt,Phys. Rev. 113, 755 (1959).

    Google Scholar 

  16. G. Wentzel,Phys. Rev. 120, 1572 (1960).

    Google Scholar 

  17. M. Luban,Phys. Rev. 128, 965 (1962).

    Google Scholar 

  18. G. V. Brown and M. H. Coopersmith,Phys. Rev. 178, 327 (1969).

    Google Scholar 

  19. N. N. Bogoliubov,J. Phys. USSR 11, 23 (1947).

    Google Scholar 

  20. T. D. Lee, K. Huang, and C. N. Yang,Phys. Rev. 106, 1135 (1957).

    Google Scholar 

  21. T. D. Lee and C. N. Yang,Phys. Rev. 112, 1419 (1958);113, 1406 (1959).

    Google Scholar 

  22. K. A. Brueckner and K. Sawada,Phys. Rev. 106, 1117 (1957);106, 1128 (1957).

    Google Scholar 

  23. W. E. Parry and D. Ter Haar,Ann. Phys. 19, 496 (1962).

    Google Scholar 

  24. R. Abe,Progr. Theoret. Phys. 20, 785 (1958).

    Google Scholar 

  25. V. Singh,Phys. Rev. 116, 507 (1959).

    Google Scholar 

  26. K. Sawada,Phys. Rev. 116, 1344 (1959);119, 2090 (1960).

    Google Scholar 

  27. K. Sawada and L. W. Bruch,Phys. Rev. 131, 1379 (1963).

    Google Scholar 

  28. L. W. Bruch and K. Sawada,Phys. Rev. 132, 499 (1963).

    Google Scholar 

  29. L. Liu and K. W. Wong,Phys. Rev. 132, 1349 (1963).

    Google Scholar 

  30. L. Liu, L. S. Liu, and K. W. Wong,Phys. Rev. 135, A1166 (1964).

  31. E. Byckling,Phys. Rev. 145, 71 (1966).

    Google Scholar 

  32. D. F. Goble and L. E. H. Trainor,Can. J. Phys. 46, 839 (1968).

    Google Scholar 

  33. P. C. Hohenberg and P. M. Platzman,Phys. Rev. 152, 198 (1966).

    Google Scholar 

  34. R. A. Cowley and D. B. Woods,Phys. Rev. Letters 21, 787 (1968).

    Google Scholar 

  35. B. H. Brandow,Phys. Rev. Letters 22, 173 (1969);Ann. Phys. (to be published).

    Google Scholar 

  36. B. H. Brandow,Phys. Rev. 152, 863 (1966).

    Google Scholar 

  37. J. Goldstone,Proc. Phys. Soc. (London)A239, 267 (1957).

    Google Scholar 

  38. J. W. Clark and P. Westhaus,Phys. Rev. 141, 833 (1966).

    Google Scholar 

  39. H. A. Bethe, B. H. Brandow, and A. G. Petschek,Phys. Rev. 129, 225 (1963).

    Google Scholar 

  40. K. A. Brueckner and J. L. Gammel,Phys. Rev. 109, 1040 (1958).

    Google Scholar 

  41. L. M. Bruch and I. J. McGee,J. Chem. Phys. 46, 2959 (1967);52, 5884 (1970).

    Google Scholar 

  42. D. G. Henshaw,Phys. Rev. 119, 9 (1960);119, 14 (1960).

    Google Scholar 

  43. O. Penrose,Phys. Letters 11, 224 (1964).

    Google Scholar 

  44. W. E. Parry and C. R. Rathbone,Proc. Phys. Soc. (London)91, 273 (1967).

    Google Scholar 

  45. W. P. Francis, G. V. Chester, and L. Reatlo,Phys. Rev. A1, 86 (1970).

    Google Scholar 

  46. A. Miller, D. Pines, and P. Nozières,Phys. Rev. 127, 1452 (1962).

    Google Scholar 

  47. D. H. Kobe,Ann. Phys. 47, 15 (1968).

    Google Scholar 

  48. O. K. Harling,Phys. Rev. Letters 24, 1046 (1970).

    Google Scholar 

  49. R. D. Puff and J. S. Tenn,Phys. Rev. A1, 125 (1970).

    Google Scholar 

  50. C. E. Campbell and E. Feenberg,Phys. Rev. 188, 396 (1969).

    Google Scholar 

  51. R. D. Murphy and R. O. Watts,J. Low. Temp. Phys. 2, 507 (1970).

    Google Scholar 

  52. P. R. Zilsel,Phys. Rev. Letters 15, 476 (1965).

    Google Scholar 

  53. H.-K. Sim and C.-W. Woo,Phys. Rev. 185, 401 (1969).

    Google Scholar 

  54. K. Sawada and R. Vasudevan,Phys. Rev. 124, 300 (1961).

    Google Scholar 

  55. R. Abe,Progr. Theoret. Phys. 19, 1 (1958);19, 699 (1958);19, 713 (1958).

    Google Scholar 

  56. W. Brenig and W. E. Parry,Z. Physik 175, 40 (1963).

    Google Scholar 

  57. J. G. Valatin and D. Butler,Nuovo Cimento 10, 37 (1958).

    Google Scholar 

  58. H. W. Jackson and E. Feenberg,Ann. Phys. 15, 266 (1961);Rev. Mod. Phys. 34, 686 (1962).

    Google Scholar 

  59. W. M. Whitney and C. E. Chase,Phys. Rev. 158, 200 (1967).

    Google Scholar 

  60. D. G. Henshaw and A. D. B. Woods,Phys. Rev. 121, 1266 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Østgaard, E. Liquid4He. I. Binding energy and excitation energy spectrum from two-body correlations. J Low Temp Phys 4, 239–262 (1971). https://doi.org/10.1007/BF00629712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00629712

Keywords

Navigation