Journal of Low Temperature Physics

, Volume 5, Issue 2, pp 197–209 | Cite as

Concentration dependence of the phase shifts for ordinary scattering in dilute magnetic alloys

  • M. S. R. Chari
  • N. S. Natarajan
  • R. G. Sharma


It has recently been shown by us that the variation of the Kondo slopesd with the solute concentrationc in dilute magnetic alloys is somewhat similar to the variation of the functionf (= cos6 η cos 2η) with the phase shift η for ordinary scattering, and that the variation of the extremum valueS m of the thermoelectric power in these alloys withc is akin to the variation of the functionf′(= cos6 η sin 2η) with η. It is shown in the present paper that the temperature-independent (residual) component of the electrical resistivity per solute at. % in these alloys varies withc in a manner similar to that of the function\(f'' [ = cos^4 \eta (\overline {1 - 4sin^2 \eta )} ]\) with η. We thus feel justified in considering the increasing mutual interactions between the magnetic solute ions, consequent upon the increase ofc, in terms of an effective increase of η. This is as if each impurity ion, on increasingc, effectively offers an increasing attractive potential to the conduction electrons. In such a case, introduction of more and more lattice defects into a dilute magnetic alloy having a given solute content should approximate the alloy more and more to the model of isolated impurity scattering, implicit in the theoretical discussions. The detailed measurements by Korn on the electrical resistivity and by Wiebking on the TEP of dilute magnetic alloy films in the quench-condensed and annealed states conform to our expectations based on such a picture. The variation of the relative depth of the resistance minimum due to changing the iron and tin contents in the dilute alloy system Cu-Fe-Sn can be understood if one assigns a net negative phase shift for ordinary scattering.


Phase Shift Electrical Resistivity Thermoelectric Power Negative Phase Theoretical Discussion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. van den Berg,Progress in Low Temperature Physics, C. J. Gorter, ed. (North Holland, Amsterdam, 1964), Vol. 4, p. 194.Google Scholar
  2. 2.
    J. Kondo,Progr. Theoret. Phys. (Kyoto)32, 37 (1964).Google Scholar
  3. 3.
    J. Kondo,Solid State Phys. 23, 183 (1969).Google Scholar
  4. 4.
    K. Yosida,Phys. Rev. 107, 396 (1957).Google Scholar
  5. 5.
    H. Suhl,Phys. Rev. 138, A 515 (1965);141, 483 (1966);Physics 2, 39 (1965); H. Suhl and D. Wong,Physics 3, 17 (1967).Google Scholar
  6. 6.
    K. Fischer,Phys. Rev. 158, 613 (1967).Google Scholar
  7. 7.
    K. Fischer,J. Phys. Chem. Solids 29, 1227 (1968).Google Scholar
  8. 8.
    J. Kondo,Phys. Rev. 169, 437 (1968).Google Scholar
  9. 9.
    Y. Nagaoka,Phys. Rev. 138, A1112 (1965);Progr. Theoret. Phys. (Kyoto) 37, 13 (1967).Google Scholar
  10. 10.
    K. Fischer,Electronic Structure in Solids, E. D. Haidemenakis, ed. (Plenum Press, New York, 1969), p. 326.Google Scholar
  11. 11.
    B. R. Coles,Phys. Letters 8, 243 (1964).Google Scholar
  12. 12.
    M. S. R. Chari,Phys. Kondensierten Materie 11, 317 (1970).Google Scholar
  13. 13.
    P. G. de Gennes,J. Phys. Radium 23, 630 (1962);Metallic Solid Solutions, J. Friedel and A. Guinier, eds. (W. A. Benjamin, New York, 1963), Chap. VI.Google Scholar
  14. 14.
    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 4, 503 (1971).Google Scholar
  15. 15.
    B. Knook, doctorate thesis, Leiden, 1962; B. Knook and G. J. van den Berg,Proc. VIII Intern. Conf. Low Temp. Phys., R. O. Davies, ed. (Butterworth, London, 1963), p. 286.Google Scholar
  16. 16.
    A. N. Gerritsen and J. O. Linde,Physica 18, 877 (1952).Google Scholar
  17. 17.
    J. O. Linde, thesis, Stockholm, 1939; also given in Fig. III, 2a, of Knook's thesis.Google Scholar
  18. 18.
    A. Kjekshus and W. B. Pearson,Can. J. Phys. 40, 98 (1962).Google Scholar
  19. 19.
    M. T. Béal,J. Phys. Chem. Solids 25, 543 (1964).Google Scholar
  20. 20.
    M. T. Béal and J. Friedel,Phys. Rev. 135A 466 (1964). M. T. Béal-Monod,Phys. Rev. 178, 874 (1969).Google Scholar
  21. 21.
    P. J. Ford, T. E. Whall, and J. W. Loram,Phys. Rev. 2, B1547 (1970).Google Scholar
  22. 22.
    J. Kondo,Progr. Theoret. Phys. (Kyoto)34, 204 (1965); A. A. Abrikosov,Physics 2, 61 (1965); S. D. Silverstein,Phys. Rev. Letters 16, 466 (1966); J. A. Blackman and R. J. Elliott,J. Phys. C. 2, 2099 (1969).Google Scholar
  23. 23.
    R. W. Schmitt and I. S. Jacobs,J. Phys. Chem. Solids 3, 324 (1957).Google Scholar
  24. 24.
    A. N. Gerritsen and J. O. Linde,Physica 17, 573 (1951).Google Scholar
  25. 25.
    J. S. Kouvel,J. Phys. Chem. Solids 21, 57 (1961).Google Scholar
  26. 26.
    D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton,Proc. Roy. Soc. (London)A266, 161 (1962).Google Scholar
  27. 27.
    R. W. Schmitt,Phys. Rev. 103, 83 (1956).Google Scholar
  28. 28.
    A. L. Norbury,Trans. Faraday Soc. 16, 570 (1921); A. L. Norbury and K. Kuwada,Phil. Mag. 4, 1338 (1927).Google Scholar
  29. 29.
    J. O. Linde,Ann. Physik 10, 42 (1931);14, 353 (1932);15, 219 (192).Google Scholar
  30. 30.
    N. F. Mott,Proc. Cambridge Phil. Soc. 32, 181 (1936).Google Scholar
  31. 31.
    N. F. Mott and H. S. W. Massey,Theory of Atomic Collisions (Oxford University Press, London, 1950), 2nd edition, Fig. 4.Google Scholar
  32. 32.
    A. J. Heeger, A. P. Klein, and P. Tu,Phys. Rev. Letters 17, 803 (1966).Google Scholar
  33. 33.
    A. Messiah,Quantum Mechanics (North Holland, Amsterdam, 1961), Vol. 1, p. 405.Google Scholar
  34. 34.
    D. Korn,Z. Physik 238, 275 (1970).Google Scholar
  35. 35.
    J. P. Franck, F. D. Manchester, and D. L. Martin,Proc. Roy. Soc. (London)A263, 494 (1961).Google Scholar
  36. 36.
    B. Knook, W. M. Star, H. J. M. Van Rongen, and G. J. van den Berg,Physica 30, 1124 (1964).Google Scholar
  37. 37.
    M. D. Daybell and W. A. Steyert,Phys. Rev. Letters 18, 398 (1967).Google Scholar
  38. 38.
    N. S. Natarajan and M. S. R. Chari,IX Thermal Conductivity Conference, Ames, Iowa, Oct. 1969, published by the U.S. Atomic Energy Commission, Div. of Technical Information, March 1970, p. 208.Google Scholar
  39. 39.
    H. Wiebking,Z. Physik 232, 126 (1970).Google Scholar
  40. 40.
    R. Hasegawa and C. C. Tsuei,Phys. Rev. B2, 1631 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • M. S. R. Chari
    • 1
  • N. S. Natarajan
    • 1
  • R. G. Sharma
    • 1
  1. 1.National Physical LaboratoryNew DelhiIndia

Personalised recommendations