Journal of Low Temperature Physics

, Volume 5, Issue 4, pp 397–418 | Cite as

Theory of thermal destruction of superconductivity by a current

  • W. C. OvertonJr.
Article

Abstract

Earlier theories on the velocity of longitudinal propagation of the normal superconductive interface for a wire or strip carrying a current near the critical value are modified and extended. The importance of the role of the latent heatQ L in a small elemental volume moving with the interface is determined;Q L was ignored in previous theoretical work. A criterion inequality is developed which permits a qualitative test of the validity of the velocity calculated by any thermal theory. The conditions for a stationary value of the energy inside a moving interface volume element are determined. They lead to a new functional relationship for the velocity in terms ofT t T B , whereT t is the transition temperature andT B is the bath or substrate temperature. Its intersection with the originalv vs.T t T B function uniquely defines both in terms of various thermodynamic parameters. Sample calculations for a Mo50Re50 alloy illuminate several aspects of the theory.

Keywords

Transition Temperature Substrate Temperature Thermodynamic Parameter Elemental Volume Functional Relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Pippard,Phil. Mag. 41, 243 (1950).Google Scholar
  2. 2.
    T. E. Faber,Proc. Roy. Soc. (London)A214, 392 (1952);A219, 75 (1953).Google Scholar
  3. 3.
    Y. Iwasa and J. E. C. Williams,J. Appl. Phys. 39, 2567 (1968); M. S. Walker and J. K. Hulm,Appl. Phys. Letters 7, 114 (1965).Google Scholar
  4. 4.
    W. H. Cherry and J. I. Gittleman, Office of Naval Research Symposium Report ACR-50, 1960, p. 75.Google Scholar
  5. 5.
    R. F. Broom and E. H. Rhoderick,Brit. J. Appl. Phys. 11, 292 (1960); J. W. Bremer and V. L. Newhouse,Phys. Rev. Letters 1, 282 (1958), 115 (1960).Google Scholar
  6. 6.
    R. F. Broom and O. Simpson,Brit. J. Appl. Phys. 11, 78 (1960); R. F. Broom and E. H. Rhoderick, Office of Naval Research Symposium Report ACR-50, 1960, p. 113.Google Scholar
  7. 7.
    C. Zener and P. G. Klemens,Thermal Destruction of Superconductivity. Westinghouse Research Laboratory Report 125-J000-R1, 1962.Google Scholar
  8. 8.
    W. A. Little,Can. J. Phys. 37, 334 (1959).Google Scholar
  9. 9.
    I. M. Khalatnikov,Zh. Eksperim. i Teor. Fiz. 22, 689 (1952).Google Scholar
  10. 10.
    A. C. Anderson, J. I. Connolly, and J. C. Wheatley,Phys. Rev. 135, A910 (1964).Google Scholar
  11. 11.
    C. B. Bean,Rev. Mod. Phys. 36, B1 (1964); A. E. Bindari and M. M. Litvak,Rev. Mod. Phys. 36, 98 (1964).Google Scholar
  12. 12.
    H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids (Oxford University Press, London, 2nd Ed., 1959), pp. 62–63, 304–307.Google Scholar
  13. 13.
    F. J. Morin and J. P. Maita,Phys. Rev. 129, 1115 (1963).Google Scholar
  14. 14.
    E. Lerner and J. G. Daunt,Phys. Rev. 142, 251 (1966).Google Scholar
  15. 15.
    E. A. Lynton,Superconductivity (Methuen and Co., London, 1962), p. 43, and references cited therein.Google Scholar
  16. 16.
    A. R. Forsyth,Calculus of Variations (Cambridge University Press, London, 1929).Google Scholar
  17. 17.
    H. L. Laquer, D. M. Weldon, and F. L. Ribe, Los Alamos Scientific Laboratory Report LA-DC-12228, June, 1971. Also private communications with H. L. Laquer and D. M. Weldon.Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • W. C. OvertonJr.
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos Alamos

Personalised recommendations