Journal of Low Temperature Physics

, Volume 4, Issue 1, pp 79–95 | Cite as

Self-consistent approximations for itinerant ferromagnetism below the phase-transition point

  • U. Brandt
  • H. Lustfeld
  • W. Pesch
  • L. Tewordt


The self-consistent and “conserving” (in particular the total spin is conserved) approximation scheme, developed in a previous paper for itinerant ferromagnetism, is extended to the region below the phase-transition point. The former general condition for the transformation properties of any approximate self-energy part with regard to infinitesimal transformations in spin space is applied to the case where the transformation is a finite rotation in spin space; these rotations correspond to rotations of the direction of the spontaneous magnetization which is fixed here by an infinitesimal auxiliary fieldH. This transformation property of the self-energy part ensures that the equations determining the corresponding Green's and correlation functions are covariant in form with respect to rotations ofH. Two examples are considered: the “Hartree-Fock” and the “particle-hole T-matrix” approximations for the contact interaction or Hubbard model. In the first example the resulting susceptibilities are shown to be causal response functions, provided the Stoner equation is fulfilled. In the second example the self-energy part and theT matrix are discussed for the two cases whereH is parallel and perpendicular to the axis of spin quantization. In fact, these expressions can be transformed into each other by means of the corresponding rotation matrix in spin space.


Correlation Function Response Function Magnetic Material Approximation Scheme Rotation Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Brandt, W. Pesch, and L. Tewordt,Z. Physik 238, 121 (1970).Google Scholar
  2. 2.
    G. Baym and L. P. Kadanoff,Phys. Rev. 124, 287 (1961); G. Baym,Phys. Rev. 127, 1391 (1962).Google Scholar
  3. 3.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, London, 1965).Google Scholar
  4. 4.
    R. D. Mattuck,Advan. Phys. 17, 509 (1968).Google Scholar
  5. 5.
    T. Izyama, D. Kim, and R. Kubo,J. Phys. Soc. Japan 18, 1025 (1963).Google Scholar
  6. 6.
    P. A. Fedders and P. C. Martin,Phys. Rev. 143, 245 (1966).Google Scholar
  7. 7.
    W. F. Brinkman and S. Engelsberg,Phys. Rev. 169, 417 (1968).Google Scholar
  8. 8.
    B. Johansson,J. Phys. C3, 50 (1970).Google Scholar
  9. 9.
    V. J. Minkiewicz, F. M. Collins, R. Nathans, and G. Shirane,Phys. Rev. 182, 624 (1969).Google Scholar
  10. 10.
    D. Pines and P. Nozières,The Theory of Quantum Liquids, Volume I (W. A. Benjamin, New York, 1966), p. 206.Google Scholar
  11. 11.
    B. Johansson and K-F. Berggren,Phys. Rev. 181, 855 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • U. Brandt
    • 1
  • H. Lustfeld
    • 1
  • W. Pesch
    • 1
  • L. Tewordt
    • 1
  1. 1.Abteilung für Theoretische Festkörperphysik am Institut für Angewandte Physik der Universität HamburgGermany

Personalised recommendations