Journal of Low Temperature Physics

, Volume 4, Issue 1, pp 41–63 | Cite as

Intermediate state of thin superconductors

  • B. L. Brandt
  • R. D. Parks
  • R. D. Chaudhari


The purpose of this study was to examine the state of a thin type-I superconductor in a magnetic field to determine its dependence on the specimen thickness and on the value of the Ginzburg-Landau parameter κ. Three materials (aluminum, indium, and In0.99Pb0.01) with values of the Ginzburg-Landau parameter ranging from 0.19 to 0.34 were studied. Specimen thicknesses ranged from 200 to 200,000 Å. All of the materials studied were type-I or nonlocal superconductors in the bulk. Yet, it has been predicted that they would behave in ways characteristic of type-II or local superconductors if the specimen were sufficiently thin. For intermediate thicknesses the specimens were expected to be in one of many possible states. We have inferred from critical field studies that the structure of the intermediate state in thin type-I superconductors is equivalent to the type-II vortex state for very thin films (d ≪ ξ0), and to the type-I macroscopic domain state for very thick films d ≳ 2ξ(t). For thicknesses between these limits the intermediate-state structure takes on many forms as the area of each normal domain and the amount of flux threading it increases with increasing thickness.


Aluminum Magnetic Field Indium Vortex Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  2. 2.
    R. R. Broom and E. H. Rhoderick,Proc. Phys. Soc. (London)79, 586 (1961).Google Scholar
  3. 3.
    P. B. Miller, B. W. Kington, and D. J. Quinn,Rev. Mod. Phys. 36, 70 (1964).Google Scholar
  4. 4.
    J. I. Gittleman, S. Bozowski, and B. Rosenblum,Phys. Rev. 161, 398 (1967).Google Scholar
  5. 5.
    M. Tinkham,Phys. Rev. 129, 2413 (1963);Rev. Mod. Phys. 36, 268 (1964).Google Scholar
  6. 6.
    A. A. Abrikosov,Zh. Eksp. i Teor. Fiz. 32, 1442 (1957) [English transl.,Soviet Phys.-JETP 5, 1174 (1957)].Google Scholar
  7. 7.
    F. E. Harper and M. Tinkham,Phys. Rev. 172, 441 (1968).Google Scholar
  8. 8.
    E. Guyon, C. Caroli, and A. Martinet,J. Phys. Radium 25, 683 (1964).Google Scholar
  9. 9.
    K. Maki,Ann. Phys. 34, 363 (1965).Google Scholar
  10. 10.
    G. Lasher,Phys. Rev. 154, 345 (1967).Google Scholar
  11. 11.
    R. E. Miller and G. D. Cody,Phys. Rev. 173, 494 (1968).Google Scholar
  12. 12.
    G. D. Cody and R. E. Miller,Phys. Rev. 173, 481 (1968).Google Scholar
  13. 13.
    J. A. Cape,Phys. Rev. 166, 432 (1968).Google Scholar
  14. 14.
    P. G. de Gennes,Superconductivity of Metals and Alloys, P. A. Pincus, transl. (W. A. Benjamin, New York, 1966).Google Scholar
  15. 15.
    N. R. Werthamer, inSuperconductivity, Vol. I, R. D. Parks, ed. (Marcel Dekker, New York, 1969).Google Scholar
  16. 16.
    V. L. Newhouse,Applied Superconductivity (John Wiley and Sons, New York, 1964).Google Scholar
  17. 17.
    A. B. Pippard,Proc. Roy. Soc. (London)A216, 547 (1953).Google Scholar
  18. 18.
    J. Bardeen,Phys. Rev. 94, 554 (1954).Google Scholar
  19. 19.
    V. L. Ginzburg,Physica 24, S42 (1958).Google Scholar
  20. 20.
    L. D. Landau,Zh. Eksp. i Teor. Fiz. 7, 371 (1937).Google Scholar
  21. 21.
    E. A. Davies,Proc. Roy. Soc. (London)A255, 407 (1960).Google Scholar
  22. 22.
    W. H. Kleiner, L. M. Roth, and S. H. Autler,Phys. Rev. 133, A1236 (1964).Google Scholar
  23. 23.
    S. Tolansky,Surface Microtopography (Wiley-Interscience, New York, 1960).Google Scholar
  24. 24.
    J. P. Burger, G. Deutscher, E. Guyon, and A. Martinet,Phys. Rev. 137, A853 (1965).Google Scholar
  25. 25.
    F. G. Brickwedde, H. Van Dijk, M. Durieux, J. R. Clement, and J. K. Logan,J. Res. Natl. Bur. Std. (U.S.)64A, 1 (1960).Google Scholar
  26. 26.
    R. P. Guertin, thesis, University of Rochester, 1968 (unpublished).Google Scholar
  27. 27.
    S. Gygax,Phys. Kondensierten Materie 4, 207 (1965).Google Scholar
  28. 28.
    B. W. Roberts,Superconducting Materials and Some of Their Properties, General Electric Research Report No. 61-RL-2744M (March 1963).Google Scholar
  29. 29.
    V. L. Ginzburg and L. D. Landau,Zh. Eksp. i Teor. Fiz. 20, 1064 (1950).Google Scholar
  30. 30.
    L. P. Gor'kov,Zh. Eksp. i Teor. Fiz. 37, 833 (1959) [English transl.,Soviet Phys.—JETP 10, 593 (1960)].Google Scholar
  31. 31.
    G. K. Chang and B. Serin,Phys. Rev. 145, 274 (1966).Google Scholar
  32. 32.
    R. D. Chaudhari and J. B. Brown,Phys. Rev. 139, A1482 (1965).Google Scholar
  33. 33.
    A. F. Mayadas,J. Appl. Phys. 39, 4241 (1968).Google Scholar
  34. 34.
    I. Holwech and J. Jeppeson,Phil. Mag. 15, 217 (1967).Google Scholar
  35. 35.
    F. W. Smith, A. Baratoff, and M. Cardona,Eleventh International Conference of Low Temperature Physics, Vol. 2, J. F. Allen, D. M. Finlayson, and D. M. McCall, eds. (University of St. Andrews Printing Dept., St. Andrews, Scotland), p. 751.Google Scholar
  36. 36.
    J. Feder and D. S. McLachlan,Phys. Rev. 177, 763 (1969).Google Scholar
  37. 37.
    F. de la Cruz, M. D. Maloney, and M. Cardona, preprint.Google Scholar
  38. 38.
    T. Faber,Proc. Roy. Soc. (London) A241, 531 (1957).Google Scholar
  39. 39.
    R. Meservy and B. B. Schwartz, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • B. L. Brandt
    • 1
  • R. D. Parks
    • 1
  • R. D. Chaudhari
    • 2
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochester
  2. 2.Department of PhysicsState University of New York College at OswegoOswego

Personalised recommendations