Journal of Low Temperature Physics

, Volume 3, Issue 2, pp 147–174 | Cite as

Magnetic-field-induced semiconductor-semimetal transition in Bi-Sb alloys

  • E. W. Fenton
  • J. -P. Jan
  • Å. Karlsson
Article

Abstract

Accurate and detailed measurements of the temperature dependence of the longitudinal magnetoresistance of single-crystal Bi-Sb alloys have been made, with static magnetic fields in the range 0–100 kG oriented parallel to the trigonal axis. Alloy concentrations were in the range 8–12 at.% Sb, and temperatures in the range 1–35 K. At very high fields the resistance increases with increasing temperature in a metallic manner with “ideal” and “residual” components, in contrast to the semiconductor behavior observed at zero field or low fields. For the high-field semimetal regime the electrical resistance behaves in a simple manner similar to a metal in zero field, in contrast to the complicated magnetoresistance phenomena for metals in low fields. This behavior can be understood in terms of a simple quasi-one-dimensional extreme-quantum-limit regime. The magnetic-field-induced semiconductor-semimetal transition is associated with an energy gap and changes of the energy-band structure which are of order 1 meV. Thermal activation energies for electrical conduction manifest this gap only at temperatures below approximately 20 K. Activation energies an order of magnitude larger which have been measured at considerably higher temperatures are apparently the direct gap at theL-point in the Brillouin zone and are not directly connected with the semiconductor-semimetal transition. Our results indicate that the zero-field indirectL-T energy gap increases from zero somewhere near 7–8 at. % Sb to values only as large as approximately 1.5 meV at 12 at. % Sb. At the magnetic-field induced transition there occurs evidence of an intermediate “excitonic insulator” phase, a resistance minimum below 10 K reminiscent of the Kondo alloy behavior. This anomalous regime is a property of the semiconductor-to-semimetal transition and cannot be associated with the well-known temperature and magnetic-field “freeze-out” of charge carriers in extrinsic semiconductors, or with magnetic ordering of the Kondo type.

Keywords

Static Magnetic Field Semiconductor Behavior Alloy Concentration Resistance Minimum Thermal Activation Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Lerner, K. F. Cuff, and L. R. Williams,Rev. Mod. Phys. 40, 770 (1968).Google Scholar
  2. 2.
    N. B. Brandt and E. A. Svistova,J. Low Temp. Phys. 2, 1 (1970); a number of publications by Brandt and coworkers are reviewed here.Google Scholar
  3. 3.
    S. Otake and S. Koike,J. Phys. Soc. Japan 24, 1176 (1968).Google Scholar
  4. 4.
    M. C. Steele,Phys. Rev. 97, 1720 (1955).Google Scholar
  5. 5.
    E. W. Fenton,Phys. Rev. 170, 816 (1968).Google Scholar
  6. 6.
    A. A. Abrikosov,J. Low Temp. Phys. 2, 37, 175 (1970).Google Scholar
  7. 7.
    J. Cizek and J. Paldus,J. Chem. Phys. 47, 3976 (1967); H. Fukutome,Progr. Theoret. Phys. 40, 998, 1227 (1968); E. W. Fenton,Phys. Rev. Letters 21, 1427 (1968).Google Scholar
  8. 8.
    J. Paldus and J. Cizek,J. Chem. Phys. 53 (Aug. 15, 1970) to be published. R. A. Harris and L. M. Falicov,J. Chem. Phys. 50, 4590 (1969); and references cited in these papers.Google Scholar
  9. 9.
    T. M. Rice, A. S. Barker, B. I. Halperin, and D. B. McWhan,J. Appl. Phys. 40, 1337 (1969); S. N. Behera and K. S. Viswanathan,Can. J. Phys. 47, 477 (1969); and references cited therein.Google Scholar
  10. 10.
    K. F. Cuff, private communication.Google Scholar
  11. 11.
    S. M. Bhagat and D. D. Manchon,Phys. Rev. 164, 966 (1967).Google Scholar
  12. 12.
    Yi-Han Kao, R. D. Brown, and R. L. Hartman,Phys. Rev. 136, A858 (1964).Google Scholar
  13. 13.
    N. B. Brandt, L. G. Lyubitina, and N. A. Kryukova,Zh. Eksperim. i Teor. Fiz. 53, 134 (1967); English transl.Soviet Phys.—JETP 26, 93 (1968).Google Scholar
  14. 14.
    S. Golin,Phys. Rev. 176, 830 (1968).Google Scholar
  15. 15.
    E. J. Tichovolsky and J. G. Mavroides,Solid State Commun. 7, 927 (1968).Google Scholar
  16. 16.
    A. L. Jain,Phys. Rev. 114, 1518 (1959).Google Scholar
  17. 17.
    G. E. Smith, G. A. Baraff, and J. M. Rowell,Phys. Rev. 135, A1118 (1964).Google Scholar
  18. 18.
    A. A. Abrikosov,Zh. Eksperim. i Teor. Fiz. 56, 1391 (1969); English transl.Soviet Phys.—JETP 29, 746 (1969).Google Scholar
  19. 19.
    P. E. Hanley and E. H. Rhoderick,J. Phys. Chem. (Gr. Br.) 2, 365 (1969).Google Scholar
  20. 20.
    D. M. Brown and S. J. Silverman,Phys. Rev. 136, A290 (1964).Google Scholar
  21. 21.
    H. P. D. Lanyon,Phys. Rev. 130, 134 (1963).Google Scholar
  22. 22.
    R. Kuboet al., Solid State Phys. 17, 269 (1965).Google Scholar
  23. 23.
    M. D. Daybell and W. A. Steyert,Rev. Mod. Phys. 40, 380 (1968).Google Scholar
  24. 24.
    H. R. Riedl,Phys. Rev. 127, 162 (1962).Google Scholar
  25. 25a.
    D. Balla and N. B. Brandt,Zh. Eksperim. i Teor. Fiz. 47, 1653 (1964); English transl.Soviet Physics—JETP 20, 1111 (1965).Google Scholar
  26. 25b.
    N. B. Brandt and Ya. G. Ponomarev,Zh. Eksperim. i. Teor. Fiz. 50, 367 (1966); English transl.Soviet Physics—JETP 23, 244 (1966).Google Scholar
  27. 26.
    D. Jerome, T. M. Rice, and W. Kohn,Phys. Rev. 158, 462 (1967).Google Scholar
  28. 27.
    B. I. Halperin and T. M. Rice,Solid State Phys. 21, 115 (1968).Google Scholar
  29. 28.
    E. W. Fenton and R. R. Haering,Phys. Rev. 159, 593 (1967).Google Scholar
  30. 29.
    G. V. Chester, M. E. Fisher, and N. D. Mermin,Phys. Rev. 185, 760 (1969).Google Scholar
  31. 30.
    A. A. Galkin and O. M. Ignat'ev,Zh. Experim. i Teor. Fiz., Pisma v Red. 8, 290 (1968); English transl.:JETP Letters 8, 178 (1968).Google Scholar
  32. 31.
    E. N. Adams and T. D. Holstein,Phys. Chem. Solids 10, 254 (1959).Google Scholar
  33. 32.
    J. W. McClure and W. J. Spry,Phys. Rev. 165, 809 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • E. W. Fenton
    • 1
  • J. -P. Jan
    • 1
  • Å. Karlsson
    • 1
  1. 1.Division of PhysicsNational Research Council of CanadaOttawaCanada

Personalised recommendations