Advertisement

Journal of Low Temperature Physics

, Volume 3, Issue 2, pp 123–135 | Cite as

The onset of surface superconductivity

  • Hartwig Schmidt
  • Hans-Jürgen Mikeska
Article

Abstract

The onset of superconductivity due to fluctuations of the order parameter is investigated in the presence of a surface. The onset of the Meissner effect is calculated in close analogy to the Landau diamagnetism of a free-electron gas, both phenomena being due to surface currents. In the framework of the static Ginzburg-Landau theory the current density induced by a magnetic field parallel to the surface is calculated as function of the distance from the surface. It is shown that for magnetic fields above the surface-nucleation fieldHc3 the integrated current density is the same for the two boundary conditions of vanishing order parameter and vanishing order-parameter derivative at the surface, and leads to the bulk expression for the fluctuation magnetization. Using the time-dependent Ginzburg-Landau theory, the dynamical conductivity in the surface sheath is calculated. Apart from numerical factors of order unity, the surface-sheath conductivity is found to diverge on approachingTc3 in the same manner as the conductivity of a thin film diverges on approaching the bulk transition temperature, and is isotropic in contrast to the bulk case in the presence of a magnetic field.

Keywords

Field Parallel Bulk Transition Meissner Effect Magnetic Field Parallel Fluctuation Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schmidt,Z. Physik 216, 336 (1968).Google Scholar
  2. 2.
    A. Schmid,Phys. Rev. 180, 527 (1969).Google Scholar
  3. 3.
    R. E. Prange,Phys. Rev. B1, 2349 (1970).Google Scholar
  4. 4.
    H.-J. Mikeska and H. Schmidt,Z. Physik 230, 239 (1970).Google Scholar
  5. 5.
    L. Landau,Z. Physik 64, 629 (1930).Google Scholar
  6. 6.
    J. Bardeen, “Theory of superconductivity, Sect. 20,” inHandbuch der Physik (Springer Verlag, Berlin, 1956), Vol. 15.Google Scholar
  7. 7.
    E. Teller,Z. Physik 67, 311 (1931).Google Scholar
  8. 8.
    P. G. de Gennes,Superconductivity of Metals and Alloys (W. A. Benjamin, Inc., New York, 1966).Google Scholar
  9. 9.
    D. Saint-James and P. G. de Gennes,Phys. Letters 7, 306 (1963).Google Scholar
  10. 10.
    D. Saint-James, G. Sarma, and E. J. Thomas,Type II Superconductivity (Pergamon Press, New York, 1969), Chapter 4.Google Scholar
  11. 11.
    B. R. Patton, V. Ambegaokar, and J. W. Wilkins,Solid State Commun. 7, 1287 (1969).Google Scholar
  12. 12.
    L. G. Azlamasov and A. I. Larkin,Phys. Letters 26A, 238 (1968);Fiz. Tverd. Tela 10, 1104 (1968).Google Scholar
  13. 13.
    R. A. Ferrell,J. Low Temp. Phys. 1, 241 (1969).Google Scholar
  14. 14.
    K. D. Usadel,Phys. Letters 29A, 501 (1969);Z. Physik 227, 260 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • Hartwig Schmidt
    • 1
  • Hans-Jürgen Mikeska
    • 2
  1. 1.Physik-DepartmentTechnische Hochschule MünchenMünchenGermany
  2. 2.Institut Max von Laue-Paul LangevinGarching bei MünchenGermany

Personalised recommendations