Journal of Low Temperature Physics

, Volume 2, Issue 2, pp 199–222 | Cite as

Relaxation time and effective mass of ions in liquid helium

  • A. J. Dahm
  • T. M. SandersJr.


A measurement of momentum relaxation times for charged particles in liquid helium is reported. The method is to measure the change in the reflection coefficient of a microwave cavity caused by the admission of ions. The measured relaxation times can be combined with the known dc mobilities of the ions to yield values for the effective masses. Most extensive measurements were performed using positive ions in He II. A temperature-dependent effective mass, increasing from approximately 40 helium masses at 1.3 K to over twice this value near the lambda point is found. The data are shown to be consistent with the electrostriction model of the ion, including contributions to the mass from both normal and superfluid components. A core radius of approximately 6 Å is shown to account both for the mass and for the mobility in the viscous flow region. Data on the negative carrier near 1.8 K yield an effective mass of 100 to 200 helium masses, and are consistent with the bubble model. The radius implied both by the mass and an analysis of mobility data in the viscous flow regime is 14±3 Å, quite consistent with the value deduced from other measurements. A measurement on the positive carrier in saturated (NBP) helium vapor indicates a mass of 75±20 helium masses. Both the mass and the mobility of this carrier are consistent with a droplet of radius 11±2 Å forming on the ion. The theoretical droplet radius is 12.6 Å.


Reflection Coefficient Effective Mass Viscous Flow Liquid Helium Droplet Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A preliminary account of this work has been given by A. J. Dahm and T. M. Sanders, Jr.,Phys. Rev. Letters 17, 126 (1966).Google Scholar
  2. 2.
    For a general review of the topic see G. Careri inProgress in Low Temperature Physics, Vol. III, edited by C. J. Gorter (North-Holland Publishing Co., Amsterdam, Netherlands, 1964), pp. 58–79.Google Scholar
  3. 3.
    G. Careri, F. Scaramuzzi, and J. O. Thompson,Nuovo Cimento 13, 186 (1959).Google Scholar
  4. 4.
    L. Meyer and F. Reif,Phys. Rev. 123, 727 (1961).Google Scholar
  5. 5.
    K. W. Schwarz and R. W. Stark,Phys. Rev. Letters 21, 967 (1968);22, 1278 (1969).Google Scholar
  6. 6.
    G. Careri, U. Fasoli, and F. S. Gaeta,Nuovo Cimento 15, 774 (1960).Google Scholar
  7. 7.
    K. R. Atkins,Phys. Rev. 116, 1339 (1959).Google Scholar
  8. 8.
    R. A. Ferrell,Phys. Rev. 108, 167 (1957).Google Scholar
  9. 9.
    C. G. Kuper,Phys. Rev. 122, 1007 (1961).Google Scholar
  10. 10.
    B. E. Springett, Morrell H. Cohen, and Joshua Jortner,Phys. Rev. 159, 183 (1967).Google Scholar
  11. 11.
    L. Meyer, H. T. Davis, S. A. Rice, and R. J. Donnelly,Phys. Rev. 126, 1927 (1962).Google Scholar
  12. 12.
    J. L. Levine and T. M. Sanders, Jr.,Phys. Rev. 154, 138 (1967).Google Scholar
  13. 13.
    P. E. Parks and R. J. Donnelly,Phys. Rev. Letters 16, 45 (1966).Google Scholar
  14. 14.
    A. V. Phelps, O. T. Fundingsland, and S. C. Brown,Phys. Rev. 84, 559 (1951).Google Scholar
  15. 15.
    T. S. Benedict and W. Shockley,Phys. Rev. 89, 1152 (1953).Google Scholar
  16. 16.
    A more detailed description of the spectrometer and other experimental apparatus is given in A. J. Dahm, Ph.D. thesis, University of Minnesota, Minneapolis, Minnesota, 1965 (unpublished).Google Scholar
  17. 17.
    G. Careri, F. Scaramuzzi, and J. O. Thomson,Nuovo Cimento 18, 957 (1960).Google Scholar
  18. 18.
    J. Herian, J. Levine, and T. M. Sanders, Jr., unpublished data.Google Scholar
  19. 19.
    G. G. Stokes,Mathematical and Physical Papers (Cambridge University Press, London, 1922), Vol. 3, p. 34; L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959), p. 96.Google Scholar
  20. 20.
    W. Rybczynski,Acad. Sci. Cracovie, Bull. 1a, 40 (1911); L. D. Landau and E. M. Lifshitz,op. cit., p. 69.Google Scholar
  21. 21.
    Mobility data were taken from F. Reif and L. Meyer,Phys. Rev. 119, 1166 (1960), L. Meyer, H. T. Davis, S. A. Rice, and R. J. Donnelly,op. cit., A. Dahm, J. Levine, J. Penley, and T. M. Sanders, Jr.,Proceedings of the Seventh International Conference on Low-Temperature Physics, Toronto, 1960, edited by G. M. Graham and A. C. Hollis Hallet (University of Toronto Press, Toronto, Canada, 1961), p. 495, and M. Kuchnir, Ph.D. thesis, University of Illinois, Urbana, Ill. (1966). Additional data in the He II region were supplied to us by J. A. Northby.Google Scholar
  22. 22.
    J. T. Tough, W. D. McCormick, and J. G. Dash,Phys. Rev. 132, 2373 (1963).Google Scholar
  23. 23.
    R. D. Taylor and J. G. Dash,Phys. Rev. 126, 1927 (1962).Google Scholar
  24. 24.
    D. G. Henshaw and A. D. B. Woods,Phys. Rev. 121, 1266 (1961).Google Scholar
  25. 25.
    W. Zimmermann, Jr., unpublished calculations (private communication).Google Scholar
  26. 26.
    E. P. Gross,Quantum Fluids, edited by D. F. Brewer (John Wiley, New York, 1966), p. 275.Google Scholar
  27. 27.
    C. Zipfel and T. M. Sanders, Jr.,Proceedings of the Eleventh International Conference on Low-Temperature Physics, St. Andrews, Scotland, 1968, edited by J. F. Allen, D. M. Finlayson, and D. M. McCall (St. Andrews University, St. Andrews, Scotland, 1969), Vol. 1, p. 296.Google Scholar
  28. 28.
    James Levine and T. M. Sanders, Jr.,Phys. Rev. Letters 8, 159 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • A. J. Dahm
    • 1
  • T. M. SandersJr.
    • 2
  1. 1.School of PhysicsUniversity of MinnesotaMinneapolis
  2. 2.H. M. Randall LaboratoryUniversity of MichiganAnn Arbor

Personalised recommendations