Skip to main content
Log in

Trapped-ion motion in helium II

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the results of a series of experiments on the mobility of negative ions trapped on quantized vortex lines in superfluid helium. Trapped-ion mobilities were measured as a function of temperature, pressure, and He3 concentration. Some of the experimental data have been previously reported.1,2 The temperature and pressure dependence of trapped-ion mobilities is qualitatively different than that of free ions. The He3 data strongly suggest that the negative ion bubble does not become deformed on the vortex line. We present a model for a vortex line having a central “core” of normal fluid extending over a distance of several angstroms surrounded by a “tail,” a region of excess roton density whose momenta are predominantly aligned opposite to the direction of circulation of the superfluid. This model is used to calculate the drag on a negative ion trapped on a vortex line. The model appears to account for the experimental results satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. I. Glaberson, D. M. Strayer, and R. J. Donnelly,Phys. Rev. Letters 20, 1428 (1968).

    Google Scholar 

  2. W. I. Glaberson, D. M. Strayer, and R. J. Donnelly,Phys. Rev. Letters 21, 1740 (1968).

    Google Scholar 

  3. R. J. Donnelly, W. I. Glaberson, and P. E. Parks,Experimental Superfluidity (University of Chicago Press, Chicago, Illinois, 1967).

    Google Scholar 

  4. R. J. Donnelly and P. H. Roberts (to be published).

  5. P. E. Parks and R. J. Donnelly,Phys. Rev. Letters 16, 45 (1966).

    Google Scholar 

  6. R. L. Douglass,Phys. Rev. Letters 13, 791 (1964).

    Google Scholar 

  7. J. J. Domingo and R. J. Donnelly,Bull. Am. Phys. Soc. 11, 479 (1966).

    Google Scholar 

  8. D. J. Tanner,Phys. Rev. 152, 121 (1966).

    Google Scholar 

  9. R. L. Douglass,Phys. Rev. 174, 255 (1968).

    Google Scholar 

  10. F. Reif and L. Meyer,Phys. Rev. 119, 1164 (1960).

    Google Scholar 

  11. B. E. Springett,Phys. Rev. 155, 139 (1967).

    Google Scholar 

  12. C. Zipfel and T. M. Sanders, Jr.,Proceedings of the Eleventh International Conference on Low Temperature Physics, to be published; and private communication.

  13. D. G. Henshaw and A. D. B. Woods,Proceedings of the Seventh International Conference on Low Temperature Physics (University of Toronto Press, Toronto, 1961), p. 539.

    Google Scholar 

  14. L. Meyer and F. Reif,Phys. Rev. 123, 727 (1961).

    Google Scholar 

  15. R. P. Feynman,Phys. Rev. 94, 262 (1954).

    Google Scholar 

  16. J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr,Phys. Rev. 113, 1379 (1959).

    Google Scholar 

  17. P. J. Bendt, R. D. Cowan, and J. L. Yarnell,Phys. Rev. 113, 1386 (1959).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959), pp. 67–70.

    Google Scholar 

  19. H. H. Tjerkstra,Physica 17, 853 (1952).

    Google Scholar 

  20. H. E. Hall,Phil. Mag. Suppl. 9, 89 (1960).

    Google Scholar 

  21. S. V. Iordanskii,Zh. Eksperim. i. Teor. Fiz. 48, 708 (1965);Soviet Phys.—JETP 21, 467 (1965).

    Google Scholar 

  22. H. Roberts and R. J. Donnelly (to be published).

  23. E. P. Gross,Nuovo Cimento 20, 454 (1961).

    Google Scholar 

  24. A. L. Fetter,Phys. Rev. 138, A709 (1965).

  25. V. L. Ginsburg and L. P. Pitaevskii,Soviet Phys.—JETP 7, 858 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Submitted to the Department of Physics of the University of Chicago in partial fulfillment of the requirements for the PhD degree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaberson, W.I. Trapped-ion motion in helium II. J Low Temp Phys 1, 289–311 (1969). https://doi.org/10.1007/BF00627865

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00627865

Keywords

Navigation