Astrophysics and Space Science

, Volume 232, Issue 1, pp 143–148 | Cite as

Does the gravitational “constant” increase?

  • Corrado Massa
Article

Abstract

The possibility that the gravitational coupling “constant”G is an increasing function of the cosmic timet is discussed.

In Section 1 the Maximal Power Hypothesis (MPH) stating that no power in Nature can exceed the upper boundc5/G (Gunn's luminosity) is advocated.

In Sections 2, 3, and 4 the MPH is employed on the cosmological scale to support the idea of an increasingG. In Section 2 the increasingG is obtained by two assumptions - the MPH and the energy conservation law - and by nothing else.

In Section 3 the increasingG follows naturally from the MPH in the Einstein-Cartan theory of gravity. The arguments proposed in Sections 2 and 3 lead todG(t)/dt > 0 but cannot specify the form ofG(t). In Section 4 the MPH is applied to the energy of the vacuum and leads to a relation betweenG and the cosmological term,G α ΛS3, valid in a matter-dominated universe (S =S(t) is the expansion factor). This relation plus the time-dependence law (suggested by many authors) Λt2 = constant, plustH > 2/3 (suggested by observations on the age of globular clusters;H is the Hubble parameter) implies an increasingG. One finds also Λ αGU, whereU is the mass density of the universe, in agreement with other studies.

Keywords

Energy Conservation Mass Density Hubble Parameter Globular Cluster Expansion Factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Rahman, A.-M.M.: 1990,Gen. Rel. Grav. 22, 655.Google Scholar
  2. Berman, M.S.: 1991,Phys. Rev. D 43, 1075.Google Scholar
  3. Berman, M.S. and Som, M.M.: 1990,Int. J. Theor. Phys. 29, 1411.Google Scholar
  4. Bertolami, O.: 1986,N. Cimento B 93, 36.Google Scholar
  5. Butcher, H.R.: 1987,Nature 328, 127.Google Scholar
  6. Damour, T.et al.: 1988,Phys. Rev. Letters 61, 1151.Google Scholar
  7. De Sabbata, V. and Gasperini, M.: 1980,Lett. N. Cimento 27, 133.Google Scholar
  8. De Sabbata, V. and Sivaram, C.: 1993,Found. Phys. Lett. 6, 561.Google Scholar
  9. Felten, J.E. and Isaacman, R.: 1986,Rev. Mod. Phys. 58, 689.Google Scholar
  10. Ford, L.H.: 1987,Phys. Rev. D 35, 2339.Google Scholar
  11. Hawking, S.W.: 1984,Phys. Lett. B 134, 403.Google Scholar
  12. Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., and Nester, J.M.: 1976,Rev. Mod. Phys. 48, 393.Google Scholar
  13. Hellings, R.W.et al.: 1983,Phys. Rev. Letters 51, 1609.Google Scholar
  14. Massa, C.: 1994,Astrophys. Space Sci. 215, 59.Google Scholar
  15. O'Connel, R.F.: 1976,Phys. Rev. Letters 37, 1653.Google Scholar
  16. Reasenberg, R.D.: 1983,Philos. Trans. Roy. Soc. London 310A, 227.Google Scholar
  17. Sivaram, C. and Garcia de Andrade, L.C.: 1993,Astrophys. Space Sci. 201, 131.Google Scholar
  18. Wetterlich, C.: 1988,Nucl. Phys. B 302, 668.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Corrado Massa
    • 1
  1. 1.Reggio EmiliaItaly

Personalised recommendations