Advertisement

Astrophysics and Space Science

, Volume 232, Issue 1, pp 37–48 | Cite as

Average photon path-length of radiation emerging from finite atmospheres

I Henyey-Greenstein Phase Function
  • Tõnu Viik
Article

Abstract

The determination of the average path-length of photons emerging from a conservative finite plane-parallel atmosphere is discussed. The multiple scattering in the atmosphere obeys the Henyey-Greenstein phase function and only the axial radiation field is considered.

In order to obtain the average path-length we need to know the derivatives of the scattering and transmission functions with respect to the albedo of single scattering and the optical thickness. As a starting point we use the integro-differential equations of Chandrasekhar for the diffuse scattering and transmission functions. By differentiation of these equations with respect to the albedo of single scattering we obtain new equations the solution of which gives us the derivatives of the intensities of the emergent radiation at the boundaries. In the case of large asymmetry parameters these equations tend to be rather stiff and the computing time may be prohibitive. To overcome this difficulty we propose an adding scheme based on the principles of invariance by Chandrasekhar.

The application of a scheme of numerical integration is discussed and some numerical results are given.

Keywords

Computing Time Radiation Field Phase Function Multiple Scattering Optical Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.E., Kagiwada, H.H., Kalaba, R.E., and Prestrud, M.C.: 1964,Invariant Imbedding and Time-Dependent Processes, Elsevier Publ. Co., Inc., N.Y., 256.Google Scholar
  2. Case, K.M.: 1960,Ann. Phys. 9, 1.Google Scholar
  3. Cash, J.R.: 1983,Comp. Math. Appl. 9, 645.Google Scholar
  4. Chandrasekhar, S.: 1960,Radiative Transfer, Dover Publ., Inc., N.Y., 393.Google Scholar
  5. Dlugach, Zh.M. and Yanovitskij, E.G.: 1974,Icarus 22, 66.Google Scholar
  6. Henyey, L.G. and Greenstein, J.L.: 1941,Astrophys. J. 93, 76.Google Scholar
  7. Ivanov, V.V., Gutshabash, S.D.: 1974,Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (In Russian) 10, 851.Google Scholar
  8. Karanjai, S. and Biswas, G.: 1968,Astrophys. Space Sci. 126, 51.Google Scholar
  9. Karanjai, S. and Biswas, G.: 1988,Astrophys. Space Sci. 149, 29.Google Scholar
  10. Machali, H.F.: 1993,Astrophys. Space Sci. 208, 33.Google Scholar
  11. Minin, I.N.: 1988,Theory of Radiative Transfer in Planetary Atmospheres, Nauka, Moscow (In Russian), 264.Google Scholar
  12. Sato, M., Kawabata, K. and Hansen, J.E.: 1977,Astrophys. J. 216, 947.Google Scholar
  13. Siewert, C.E. and Benoist, P.: 1979,Nucl. Sci. Eng. 69, 156.Google Scholar
  14. Sobolev, V.V.: 1975,Light Scattering in Planetary Atmospheres, Pergamon Press, Oxford.Google Scholar
  15. van de Hulst, H.C.: 1963,A New Look at Multiple Scattering, Unnumbered mimeographed report, NASA Inst. for Space Sci., N.Y.Google Scholar
  16. van de Hulst, H.C.: 1980,Multiple Light Scattering, Academic Press, N.Y., 739.Google Scholar
  17. Viik, T.: 1993a,Astrophys. Space Sci. 204, 213.Google Scholar
  18. Viik, T.: 1993b,Astrophys. Space Sci. 209, 255.Google Scholar
  19. Viik, T.: 1994a,Astrophys. Space Sci. 211, 307.Google Scholar
  20. Viik, T.: 1994b,Astrophys. Space Sci. 222, 47.Google Scholar
  21. Viik, T.: 1994c,Astrophys. Space Sci. 225, 205.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Tõnu Viik
    • 1
  1. 1.W.Struve Tartu Astrophysical ObservatoryTõravereEstonia

Personalised recommendations