Astrophysics and Space Science

, Volume 215, Issue 1, pp 59–72 | Cite as

Implications of a cosmological term coupled to matter

  • Corrado Massa


The possibility that the cosmological term is proportional toGU, whereG is the gravitational coupling andU is the mass density of the universe is proposed and discussed. WithG = constant, a cosmological model is obtained, which avoids the flatness and horizon problems and does not affect the well known predictions on the cosmic helium abundance which come from standard big bang cosmology. In such model, the deceleration parameter is a null constant, there is matter creation process throughout the universe at the rate 10−47 g cm−3 s−1 and the cosmological term varies asH2 =t−2, whereH is the Hubble constant andt is the cosmic time.

The possibility of a time-dependentG is then considered. The main consequence of this is that there is a mass creation process on the local scale; the rate of mass creation inside a body of massM is dM/dt =M H. In Section 6 it is suggested that the new matter might be in the form of neutrinos. This suggestion leads to an interesting consequence in celestial mechanics: the radius of a binary system should depend on time according to the nature of the components (the radius of a binary star should decrease, the radius of a planet-moon system should expand, and the orbital radius of a planet should stay constant).


Creation Process Deceleration Parameter asH2 Celestial Mechanic Cosmic Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Rahman, A-M.M.: 1990,Gen. Rel. Grav. 22, 655.Google Scholar
  2. Beesham, A.: 1986,Nuovo Cimento 96 B, 17.Google Scholar
  3. Berman, M.S.: 1991,Phys. Rev. D 43, 1075.Google Scholar
  4. Bondi, H.: 1960,Cosmology, Cambridge Univ. Press, Cambridge.Google Scholar
  5. Caianiello, E.: 1992,Rivista Nuovo Cimento 15, n.4.Google Scholar
  6. Caldirola, P., Pavsic, M. and E. Recami: 1978,Nuovo Cimento 48 B, 205.Google Scholar
  7. Chen, W. and Wu, Y.-S.: 1990,Phys. Rev. D 41, 695.Google Scholar
  8. Cohen, S.A. and King, J.G.: 1969,Nature 222, 1158.Google Scholar
  9. Damour, al.: 1988,Phys. Rev. Lett. 61, 1151.Google Scholar
  10. DerSarkissian, M.: 1985,Nuovo Cimento 88 B, 29.Google Scholar
  11. Gasperini, M: 1992,Gen. Rel. Grav. 24, 219.Google Scholar
  12. Hawking, S.W.: 1984,Phys. Lett. B 134, 403.Google Scholar
  13. Hellings, R. al.: 1983,Phys. Rev. Lett. 51, 1609.Google Scholar
  14. Kalligas, D., Wesson, P. and Everitt, C.: 1992,Gen. Rel. Grav. 24, 351Google Scholar
  15. Landsberg, P.T.: 1984.Ann. Phys. 41, 88.Google Scholar
  16. Lau, Y.-K.: 1985,Austr. J. Phys. 38, 547.Google Scholar
  17. Massa, C.: 1988,Helv. Phys. Acta 62, 424; 1993,Astrophys. Space Sci. 209, 309.Google Scholar
  18. Narlikar, J.V.: 1983,Introduction to Cosmology, Jones and Bartlett, Boston.Google Scholar
  19. Padmanabhan, T. and Seshadri T.R.: 1987,J. Astrophys. Astron. 8, 275.Google Scholar
  20. Rauch, R.T.: 1984,Phys. Rev. Lett. 52, 1843.Google Scholar
  21. Reasenberg, R.D.: 1983,Philos. Trans. Roy. Soc. London 310A, 227.Google Scholar
  22. Sivaram, C. and Sinha, C.P.: 1979,Phys. Rep. 51, 111.Google Scholar
  23. Sivaram, C. and G. De Andrade: 1993,Astrophys. Space Sci. 201, 121.Google Scholar
  24. Soleng, H.H.: 1987,Astrophys. Space Sci. 136, 109.Google Scholar
  25. Van Flandern, T.C.: 1981,Astrophys. J. 248, 813.Google Scholar
  26. Waga, I.: 1992,Gen. Rel. Grav. 24, 783.Google Scholar
  27. Weinberg, S.: 1972,Gravitation and Cosmology, Wiley, New York.Google Scholar
  28. Wilkins, D.: 1986,American J. Phys. 54, 726.Google Scholar
  29. Zel'dovich, Ya.B.: 1967,Sov. Phys. - JETP Lett. 6, 316; 1968:Sov. Phys. Uspekhi 11, 381.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Corrado Massa
    • 1
  1. 1.Reggio EmiliaItaly

Personalised recommendations