Astrophysics and Space Science

, Volume 233, Issue 1–2, pp 11–25 | Cite as

The observational study of Herbig-Haro shock waves

  • Karl-Heinz Böhm
Article

Abstract

We review the basic shock properties and the origin and the geometry of Herbig-Haro (H-H) shock waves. We first discuss different aspects of “normal” H-H objects which are connected with working surfaces (including internal working surfaces) of jets from young stellar objects. The emphasis is on unsolved problems of the H-H shock waves and not on the problems of the jet.

We study the line flux ratios of high excitation H-H objects (high velocity shocks) and low excitation HH objects (low velocity shocks) and carry out a comparison with theoretical predictions in both cases. We emphasize an unexplained deficit of higher ions (especially OIII and SIII, but also various other ions) in high excitation objects. This lets the line flux ratios of HH objects appear as if their shock velocities are almost never above 100 km s−1, while other shock diagnostics (position-velocity diagrams, integrated line profiles, distributions of fluxes along the axis of the bow shock, etc.) definitely indicate higher shock velocities.

Some aspects of the spectrum interpretation of the very low velocity shocks (like HH7) are explained quite well by the theory. A basic unsolved problem is, however, the explanation of the CI lines whose flux is up to a factor 10 times stronger than predicted for any model. Obviously we are very far from correctly predicting the ionization of C in shock models.

In the last chapter we discuss, as one example of a very unusual HH-object, HH255 (Burnham's nebula). Detailed line fluxes in the immediate environment of T Tauri (the source of HH255) have shown that HH255 has a shock wave spectrum and is definitely an HH object. In the very narrow region between 3″ and 4″ S of T Tauri we find a sharp peak of the velocity dispersion, the centroid velocity, and Ne. In the same region there is an almost discontinous increase in ionization. Between 4″ and 10″ S (corresponding to 600-1600 a.u.) of T Tauri (the source of HH255) the ionization remains high but the centroid velocity is zero (with respect to T Tauri) and the velocity dispersion is very small. This result is completely surprising for a shock wave which according to the flux ratios must have ∼90 km s−1-1 shock velocity. Why should a cooling region of a shock have a centroid velocity of ∼0 km s−1 over a large range of distance from the stellar source? At present the geometry of the HH255 is enigmatic.

Key words

Shock Waves Herbig-Haro Objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck-Winchatz, B., Böhm, K.H. & Noriega-Crespo, A.: 1994,Pub. Astr. Soc. Pac. 106, 1271Google Scholar
  2. Binette, L., Dopita, M. A. & Tuohy, I. R.: 1985,Astrophys. J. 297, 476Google Scholar
  3. Blondin, J. M., Fryxell, B. A. & Königl, A.: 1990,Astrophys. J. 360, 370Google Scholar
  4. Blondin, J. M., Königl, A. & Fryxell, B. A.: 1989,Astrophys. J. 337, L37Google Scholar
  5. Böhm, K.H.: 1956,Astrophys. J. 123, 379Google Scholar
  6. Böhm, K.H., Böhm-Vitense, E. & Brugel, E. W.: 1981,Astrophys. J. 245, L113Google Scholar
  7. Böhm, K.H., Noriega-Crespo, A. & Solf, J.: 1993,Astrophys. J. 416, 647Google Scholar
  8. Böhm, K.H., Bührke, T., Raga, A., Brugel, E. W., Witt, A. N. & Mundt, R.: 1987,Astrophys. J. 316, 349Google Scholar
  9. Böhm. K.H., Raga, A. C. & Solf, J.: 1987, ‘I.A.U. Symp. 122, Circumstellar Matter’ in I. Appenzeller and C. Jordan, ed(s).,Reidel, Dordrecht, 187Google Scholar
  10. Böhm, K.H., Scott, D. M. & Solf, J.: 1991,Astrophys. J. 371, 248Google Scholar
  11. Böhm. K.H., & Solf, J.: 1990,Astrophys. J. 348, 297Google Scholar
  12. Böhm, K.H. & Solf, J.: 1994,Astrophys. J. 430, 277Google Scholar
  13. Bührke, T., Brugel, E. W. & Mundt, R.: 1986,Astron. Astrophys. 164, 83Google Scholar
  14. Choe, S. U., Böhm. K.H. & Solf, J.: 1985,Astrophys. J. 288, 338Google Scholar
  15. Dyson, J.: 1987, ‘I.A.U. Symp. 122, Circumstellar Matter’ in I. Appenzeller and C. Jordan, ed(s).,Reidel, Dordrecht, 159Google Scholar
  16. Eislöffel, J., Mundt, R. & Böhm, K.H.: 1994,Astron. J. 108, 1042Google Scholar
  17. Elias, J. H.: 1980,Astrophys. J. 241, 728Google Scholar
  18. Grevesse, N. and Anders, E.: 1991, ‘Solar Interior and Atmosphere’ in A. N. Cox, W. C. Livingstone and M. S. Matthews, ed(s).,The University of Arizona Press, Tucson, 227Google Scholar
  19. Hartigan, P.: 1989,Astrophys. J. 339, 987Google Scholar
  20. Hartigan, P., Curiel, S. & Raymond, J.: 1989,Astrophys. J. 347, L31Google Scholar
  21. Hartigan, P. & Raymond, J.: 1993,Astrophys. J. 409, 705Google Scholar
  22. Hartigan, P., Raymond, J. & Hartmann, L.: 1987,Astrophys. J. 316, 323Google Scholar
  23. Hartmann, L. & Raymond, J.: 1984,Astrophys. J. 276, 560Google Scholar
  24. Henney, W. J., Raga, A. C. & Axon, D. J.: 1994,Astrophys. J. 427, 305Google Scholar
  25. Herbig, G. H.: 1950,Astrophys. J. 111, 11Google Scholar
  26. Herbig, G. H.: 1951,Astrophys. J. 113, 697Google Scholar
  27. Herbig, G. H. & Jones, B. F.: 1981,Astron. J. 86, 1232Google Scholar
  28. Indebetouw, R. & Noriega-Crespo, A.: 1995,Astron. J. 109, 752Google Scholar
  29. Noriega-Crespo, A., Böhm, K.H. & Raga, A. C.: 1989,Astron. J. 98, 1388Google Scholar
  30. Noriega-Crespo, A., Böhm, K.H. & Raga, A. C.: 1990,Astron. J. 99, 1918Google Scholar
  31. Noriega-Crespo, A., Calvet, N. & Böhm, K.H.: 1991,Astrophys. J. 379, 676Google Scholar
  32. Ortolani, S. & d'Odorico, S.: 1980,Astron. Astrophys. 83, L8Google Scholar
  33. Raga, A. C.: 1986,Astron. J. 92, 637Google Scholar
  34. Raga, A. C.: 1988,Astrophys. J. 335, 820Google Scholar
  35. Raga, A. C. & Böhm, K.H.: 1985,Astrophys. J. Suppl. 58, 201Google Scholar
  36. Raga, A. C. & Böhm, K.H.: 1986,Astrophys. J. 308, 829Google Scholar
  37. Raga, A. C. & Böhm, K.H.: 1987,Astrophys. J. 323, 193Google Scholar
  38. Raga, A. C. & Kofman, L.: 1992,Astrophys. J. 386, 222Google Scholar
  39. Raga, A. C., Mateo, M., Böhm, K.H. & Solf, J.: 1988,Astron. J. 95, 1783Google Scholar
  40. Raymond, J.: 1979,Astrophys. J. Suppl. 39,Google Scholar
  41. Reipurth, B.: 1989, ‘ESO Workshop on Low Mass Star Formation and Pre-Main Sequence Objects’ in B. Reipurth, ed(s).,ESO, Garching, 247Google Scholar
  42. Reipurth, J.: 1991, ‘Physics of Star Formation and Early Stellar Evolution Proc., Nato Advanced Study Institute’ in C. L. Lada and N. D. Kyfalis, ed(s).,Kluwer, Dordrecht, 497Google Scholar
  43. Shull, J. M. & McKee, C. F.: 1979,Astrophys. J. 227, 131Google Scholar
  44. Schwartz, R. D.: 1974,Astrophys. J. 191, 419Google Scholar
  45. Schwartz, R. D.: 1975,Astrophys. J. 195, 631Google Scholar
  46. Schwartz, R. D.: 1978,Astrophys. J. 223, 884Google Scholar
  47. Schwartz, R. D.: 1983,Astrophys. J. 268, L87Google Scholar
  48. Schwartz, R. D., Cohen, M. & Williams, P. M.: 1987,Astrophys. J. 322, 403Google Scholar
  49. Schwartz, R. D., Dopita, M. A. & Cohen, M.: 1985,Astron. J. 90, 1820Google Scholar
  50. Solf, J. & Böhm, K.H.: 1987,Astron. J. 93, 1172Google Scholar
  51. Solf, J. & Böhm, K.H.: 1991,Astrophys. J. 375, 618Google Scholar
  52. Solf, J. & Böhm, K.H.: 1993,Astrophys. J. 410, L31Google Scholar
  53. Solf, J., Böhm, K.H. & Raga, A. C.: 1986,Astrophys. J. 305, 795Google Scholar
  54. Solf, J., Böhm, K.H & Raga, A. C.: 1988,Astrophys. J. 334, 229Google Scholar
  55. Stone, J. M. & Norman, M. L.: 1993,Astrophys. J. 413, 198Google Scholar
  56. Stone, J. M. & Norman, M. L.: 1993,Astrophys. J. 413, 210Google Scholar
  57. Stone, J. M. & Norman, M. L.: 1994,Astrophys. J. 420, 237Google Scholar
  58. Wolfire, M. G. & Königl, A.: 1991,Astrophys. J. 383, 205Google Scholar
  59. Zinnecker, H., Mundt, A., Geballe, T. R. & Zealey, W. J.: 1989,Astrophys. J. 342, 337Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Karl-Heinz Böhm
    • 1
  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations