Astrophysics and Space Science

, Volume 202, Issue 1, pp 1–10 | Cite as

Effect of rotation on unsteady hydromagnetic Couette flow

  • Pallath Chandran
  • Nirmal C. Sacheti
  • A. K. Singh


The effects of rotation and magnetic field on the Couette flow of an electrically-conducting fluid between two parallel plates have been discussed when one of the plates has been set into impulsive motion. Under the assumption of negligible induced magnetic field and the applied field being fixed relative to the moving plate, the governing momentum equations have been solved exactly, and the expressions for velocity and skin friction have been presented. The variations of velocity and skin friction have been discussed for different parameter values. The decrease in velocity due to rotation and its increase due to magnetic field have been shown.


Magnetic Field Applied Field Momentum Equation Skin Friction Parallel Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, J. P.: 1962,Appl. Sci. Res. 9B, 255.Google Scholar
  2. Jana, R. N. and Datta, N.: 1977,Int. J. Engng. Sci. 15, 35.Google Scholar
  3. Katagiri, M.: 1962,J. Phys. Soc. Japan 17, 393.Google Scholar
  4. McLachlan, N. W.: 1947,Complex Variable and Operational Calculus with Technical Applications, Cambridge University Press, New York.Google Scholar
  5. Muhuri, P. K.: 1963,J. Phys. Soc. Japan 18, 1671.Google Scholar
  6. Pai, S. I.: 1956,Viscous Flow Theory - I, Van Nostrand, Princeton.Google Scholar
  7. Pai, S. I.: 1962,Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, Berlin.Google Scholar
  8. Raptis, A. and Singh, A. K.: 1986,Acta Phys. Hung. 60, 221.Google Scholar
  9. Schlichting, H.: 1979,Boundary Layer Theory, McGraw Hill, New York.Google Scholar
  10. Sercliff, J. A.: 1965,A Textbook of Magnetohydrodynamics, Pergamon Press, London.Google Scholar
  11. Seth, G. S. and Jana, R. N.: 1980,Acta Mech. 37, 29.Google Scholar
  12. Seth, G. S., Jana, R. N., and Maiti, M. K.: 1982,Int. J. Engng. Sci. 20, 989.Google Scholar
  13. Singh, A. K.: 1982,Astrophys. Space Sci. 87, 455.Google Scholar
  14. Singh, A. K.: 1983,Astrophys. Space Sci. 93, 177.Google Scholar
  15. Singh, A. K.: 1984,Astrophys. Space Sci. 102, 213.Google Scholar
  16. Singh, A. K. and Kumar, N.: 1983,Wear 89, 125.Google Scholar
  17. Soundalgekar, V. M.: 1967,Proc. Ind. Acad. Sci. 65A, 179.Google Scholar
  18. Strand, O. N.: 1965,Math. Comput. 19, 127.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Pallath Chandran
    • 1
  • Nirmal C. Sacheti
    • 1
  • A. K. Singh
    • 2
  1. 1.Department of Mathematics and ComputingCollege of Science Sultan Qaboos UniversityMuscatSultanate of Oman
  2. 2.Department of Civil and Agricultural EngineeringUniversity of MelbourneParkville, VictoriaAustralia

Personalised recommendations